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Final report
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1. OoO execution and dynamic scheduling

• Draw the cycle by cycle processing behavior of these 10 
instructions

• Modify this dataflow graph and draw another cycle by cycle 
processing behavior of the graph having 10 instructions
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2. Register renaming of multi-instructions per cycle

1. Design a register renaming unit which renames two instructions 
per cycle in Verilog HDL. Please download rename01.v and 
rename02.v from the support page and refer them. 

2. Design a register renaming unit which renames three instructions 
per cycle in Verilog HDL. 

• Please modify a module RENAME in rename02.v referring the 
design which renames one instruction per cycle in rename01.v.

• The renamed instruction sequences by rename01.v and rename02.v 
must be the same. 

• The report should include a block diagram, a source code in 
Verilog HDL, and obtained waveforms of your design.
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Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or  $5,$5,$2
I3: and $2,$9,$1
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A_dst = $5
A_src1 = $1
A_src2 = $2

A_dst = p9
A_src1 = p1
A_src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4 B_dst = $9

B_src1 = $5
B_src2 = $4

B_dst = p10
B_src1 = p9
B_src2 = p4

M
ux

If B_src1==A_dst, use tag from free tag buffer
I0

I1
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3. Parallel programming (The free lunch is over)

• Describe an efficient parallel program for the following sequential 
program using LOCK(), UNLOCK() and BARRIER().

• Explain why your cord runs correctly and why your code is efficient.
#define N 8      /* the number of grids */
#define TOL 15.0 /* tolerance parameter */
float A[N+2], B[N+2];

void solve () {
int i, done = 0;
while (!done) {

float diff = 0;
for (i=1; i<=N; i++) { /* use A as input */

B[i] = 0.333 * (A[i‐1] + A[i] + A[i+1]);
}
for (i=1; i<=N; i++) { /* use B as input */

A[i] = 0.333 * (B[i‐1] + B[i] + B[i+1]);
diff = diff + fabsf(B[i] ‐ A[i]);

}
if (diff <TOL) done = 1;
for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("| diff=%6.2f¥n", diff); /* for debug */

}
}

int main() {
int i;
for (i=1; i<N‐1; i++) A[i] = B[i] = 100+i*i;
solve();

}main02.c
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4. Building blocks for synchronization 

• Fetch-and-increment reads an original value from memory and 
increments (adds one to) it in memory atomically

• Implement fetch-and-increment (FAI) using the load-linked/store-
conditional instruction pair
• Refer the discussion of implementing an atomic exchange EXCH

• Implement BARRIER() using FAI
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5. Cache coherence protocols

• Select your favorite commercial multi-core processor
• Describe the memory organization including caches and main 

memory
• cache line size, write policy, write allocate/no-allocate, direct-

mapped/set-associative, the number of caches (L1, L2, and L3?)
• Describe the cache coherence protocol used there
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6. Academic paper reading

• Select a paper from the list below and
• Describe the problem that the authors try to solve,
• Describe the key idea of the proposal,
• Describe your opinion why the authors could solve the 

problem although there may be many researchers try to solve  
similar problems.

• List
• Emulating Optimal Replacement with a Shepherd Cache, MICRO-40, 2008
• The V-Way Cache: Demand Based Associativity via Global Replacement, 

ISCA’05, 2005
• Skewed Compressed Caches, MICRO-47, 2014
• Prophet/critic hybrid branch prediction, ISCA’04, 2004
• A new case for the TAGE branch predictor, MICRO-44, 2011


