Fiscal Year 2018

N

Course humber: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

15. Final report

f
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 Kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYSQYECH 1

Final report

x
1. Submit your final report in a PDF file via E-mail by February 17, 2019
2.

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

1. 000 execution and dynamic scheduling x
\

* Draw the cycle by cycle processing behavior of these 10
instructions

* Modify this dataflow graph and draw another cycle by cycle
processing behavior of the graph having 10 instructions

OO
O o

| od

~ ="
) 3

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Cycle 1

Cycle 6

Instruction window

Issue

Commit

Retire

||
||

Instruction window

Issue

Commit

[]
[]

Retire

||
||

L

|ROB

Cycle 2

L

|ROB

Cycle 7

Instruction window

Issue

o
c
—+
®

0

Commit

[]
[]

Retire

||
||

Instruction window

Commit

[]
[]

Retire

||
||

UL

|ROB

Cycle 3

IROB

Cycle 8

Instruction window

Issue

o
c
—+
()

0

Commit

[]
[]

Retire

[
||

Instruction window

Commit

[]
[]

Retire

||
||

UL

|ROB

Cycle 4

|ROB

Cycle 9

Instruction window

Issue

o
c
—+
()

0

Commit

[]
[]

Retire

||
||

Instruction window

Commit

[]
[]

Retire

||
||

UL

|ROB

Cycle 5

|ROB

Cycle 10

Instruction window

Issue

L

Execute

> L]
> L[]

Commit

[]
[]

Retire

||
||

Instruction window

Issue

Commit

[]
[]

Retire

||
||

|ROB

=S

[]
[]
[]

|ROB

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

2. Register renaming of multi-instructions per cycle x
\

1. Design a register renaming unit which renames two instructions
per cycle in Verilog HDL. Please download renameQO1l.v and
rename02.v from the support page and refer them.

2. Design a register renaming unit which renames three instructions
per cycle in Verilog HDL.

* Please modify a module RENAME in renameQ2.v referring the
desigh which renames one instruction per cycle in renameOl.v.

* The renamed instruction sequences by renameOl.v and rename02.v
must be the same.

* The report should include a block diagram, a source code in
Verilog HDL, and obtained waveforms of your design.

=)

A@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Renaming two instructions per cycle for superscalar

e Renaming instruction I0 and I1

Cycle

10:

1

I1:
12:
I13:

sub $5,%1,%2
add $9,%5,%4
or $5,%5,%2
and $2,9%9, %1

Free tag buffer

Register map table

13(12{11|10| 9 ==

=)

49‘

I0 A dst =
A srcl =
A src2 =

T1 B_dst =
B srcl =
B src2

9 (%]
— 1 1
3 3 e » A dst = p9
"4 4 T, Q—SPC; = p;
................. > Src =
b 550 P
6 6
..................... 7 7 BN B dst — pl@
............... o P e —— B_srcl = p9
“§F 2510 B_src2 = p4
If B_srcl==A_dst, use tag from free tag buffer
10
I0: sub p9,pl,p2
I1: add plo,p9,ps
31

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

3. Parallel programming (The free lunch is over)
\
« Describe an efficient parallel program for the following sequential
program using LOCK(), UNLOCK() and BARRIER().

« Explain why your cord runs correctly and why your code is efficient.

#define N 8 /* the number of grids */
#define TOL 15.0 /* tolerance parameter */
float A[N+2], B[N+2];

void solve () {
int i, done = 9;
while (!done) {
float diff = 0;
for (i=1; i<=N; i++) { /* use A as input */
B[i] = ©0.333 * (A[i-1] + A[i] + A[i+1]);
}
for (i=1; i<=N; i++) { /* use B as input */
A[i] = ©0.333 * (B[i-1] + B[i] + B[i+1]);
diff = diff + fabsf(B[i] - A[i]);
}
if (diff <TOL) done = 1;
for (i=@; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("| diff=%6.2f¥n", diff); /* for debug */

}
}
int main() {
int i;
for (i=1; i<N-1; i++) A[i] = B[i] = 1@0+i*i;
=\ solve();

~@Q' main@2.c |
\ 7

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

4. Building blocks for synchronization x
\

« Fetch-and-increment reads an original value from memory and
increments (adds one to) it in memory atomically

« Implement fetch-and-increment (FAT) using the load-linked/store-
conditional instruction pair

» Refer the discussion of implementing an atomic exchange EXCH
« Implement BARRIER() using FAI

=)

49‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

5. Cache coherence protocols X
\

 Select your favorite commercial multi-core processor
* Describe the memory organization including caches and main
memory

 cache line size, write policy, write allocate/no-allocate, direct-
mapped/set-associative, the number of caches (L1, L2, and L3?)

« Describe the cache coherence protocol used there

~ "\ ="
) :

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

6. Academic paper reading
\

« Select a paper from the list below and

Describe the problem that the authors try to solve,
Describe the key idea of the proposal,

Describe your opinion why the authors could solve the
problem although there may be many researchers try to solve
similar problems.

e List

™

A@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Emulating Optimal Replacement with a Shepherd Cache, MICRO-40, 2008

The V-Way Cache: Demand Based Associativity via Global Replacement,
ISCA'05, 2005

Skewed Compressed Caches, MICRO-47, 2014
Prophet/critic hybrid branch prediction, ISCA'04, 2004
A new case for the TAGE branch predictor, MICRO-44, 2011

10

