
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

15. Final report

Ver. 2019-02-01aFiscal Year 2018

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 13:20-14:50, Thr 13:20-14:50

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Final report

1. Submit your final report in a PDF file via E-mail by February 17, 2019
2. Enjoy!

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

1. OoO execution and dynamic scheduling

• Draw the cycle by cycle processing behavior of these 10
instructions

• Modify this dataflow graph and draw another cycle by cycle
processing behavior of the graph having 10 instructions

75

6

8 10

9

3

4

1 2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Instruction window Issue Execute Commit

ROB

Retire

Cycle 1

Instruction window Issue Execute Commit

ROB

Retire

Cycle 2

Instruction window Issue Execute Commit

ROB

Retire

Cycle 3

Instruction window Issue Execute Commit

ROB

Retire

Cycle 4

Instruction window Issue Execute Commit

ROB

Retire

Cycle 5

Instruction window Issue Execute Commit

ROB

Retire

Cycle 6

Instruction window Issue Execute Commit

ROB

Retire

Cycle 7

Instruction window Issue Execute Commit

ROB

Retire

Cycle 8

Instruction window Issue Execute Commit

ROB

Retire

Cycle 9

Instruction window Issue Execute Commit

ROB

Retire

Cycle 10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

2. Register renaming of multi-instructions per cycle

1. Design a register renaming unit which renames two instructions
per cycle in Verilog HDL. Please download rename01.v and
rename02.v from the support page and refer them.

2. Design a register renaming unit which renames three instructions
per cycle in Verilog HDL.

• Please modify a module RENAME in rename02.v referring the
design which renames one instruction per cycle in rename01.v.

• The renamed instruction sequences by rename01.v and rename02.v
must be the same.

• The report should include a block diagram, a source code in
Verilog HDL, and obtained waveforms of your design.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Renaming two instructions per cycle for superscalar

• Renaming instruction I0 and I1

I0: sub $5,$1,$2
I1: add $9,$5,$4
I2: or $5,$5,$2
I3: and $2,$9,$1

Cycle 1

9101112

Free tag buffer

head

13

0

Register map table

1
2
3
4

5‐>9
6
7
8

‐>10

0
1
2
3
4
5
6
7
8
9
10

31

A_dst = $5
A_src1 = $1
A_src2 = $2

A_dst = p9
A_src1 = p1
A_src2 = p2

I0: sub p9,p1,p2
I1: add p10,p9,p4 B_dst = $9

B_src1 = $5
B_src2 = $4

B_dst = p10
B_src1 = p9
B_src2 = p4

M
ux

If B_src1==A_dst, use tag from free tag buffer
I0

I1

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

3. Parallel programming (The free lunch is over)

• Describe an efficient parallel program for the following sequential
program using LOCK(), UNLOCK() and BARRIER().

• Explain why your cord runs correctly and why your code is efficient.
#define N 8 /* the number of grids */
#define TOL 15.0 /* tolerance parameter */
float A[N+2], B[N+2];

void solve () {
int i, done = 0;
while (!done) {

float diff = 0;
for (i=1; i<=N; i++) { /* use A as input */

B[i] = 0.333 * (A[i‐1] + A[i] + A[i+1]);
}
for (i=1; i<=N; i++) { /* use B as input */

A[i] = 0.333 * (B[i‐1] + B[i] + B[i+1]);
diff = diff + fabsf(B[i] ‐ A[i]);

}
if (diff <TOL) done = 1;
for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("| diff=%6.2f¥n", diff); /* for debug */

}
}

int main() {
int i;
for (i=1; i<N‐1; i++) A[i] = B[i] = 100+i*i;
solve();

}main02.c

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

4. Building blocks for synchronization

• Fetch-and-increment reads an original value from memory and
increments (adds one to) it in memory atomically

• Implement fetch-and-increment (FAI) using the load-linked/store-
conditional instruction pair
• Refer the discussion of implementing an atomic exchange EXCH

• Implement BARRIER() using FAI

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

5. Cache coherence protocols

• Select your favorite commercial multi-core processor
• Describe the memory organization including caches and main

memory
• cache line size, write policy, write allocate/no-allocate, direct-

mapped/set-associative, the number of caches (L1, L2, and L3?)
• Describe the cache coherence protocol used there

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

6. Academic paper reading

• Select a paper from the list below and
• Describe the problem that the authors try to solve,
• Describe the key idea of the proposal,
• Describe your opinion why the authors could solve the

problem although there may be many researchers try to solve
similar problems.

• List
• Emulating Optimal Replacement with a Shepherd Cache, MICRO-40, 2008
• The V-Way Cache: Demand Based Associativity via Global Replacement,

ISCA’05, 2005
• Skewed Compressed Caches, MICRO-47, 2014
• Prophet/critic hybrid branch prediction, ISCA’04, 2004
• A new case for the TAGE branch predictor, MICRO-44, 2011

