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Final report

x
1.  Submit your final report in a PDF file via E-mail by February 17, 2019
2.
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1. 000 execution and dynamic scheduling x
\

* Draw the cycle by cycle processing behavior of these 10
instructions

* Modify this dataflow graph and draw another cycle by cycle
processing behavior of the graph having 10 instructions
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2. Register renaming of multi-instructions per cycle x
\

1. Design a register renaming unit which renames two instructions
per cycle in Verilog HDL. Please download renameQO1l.v and
rename02.v from the support page and refer them.

2. Design a register renaming unit which renames three instructions
per cycle in Verilog HDL.

* Please modify a module RENAME in renameQ2.v referring the
desigh which renames one instruction per cycle in renameOl.v.

* The renamed instruction sequences by renameOl.v and rename02.v
must be the same.

* The report should include a block diagram, a source code in
Verilog HDL, and obtained waveforms of your design.
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Renaming two instructions per cycle for superscalar

e Renaming instruction I0 and I1

Cycle

10:

1

I1:
12:
I13:

sub $5,%1,%2
add $9,%5,%4
or $5,%5,%2
and $2,9%9, %1

Free tag buffer

Register map table

13(12{11|10| 9 ==
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I0 A dst =
A srcl =
A src2 =

T1 B_dst =
B srcl =
B src2

9 (%]
— 1 1
3 3 e » A dst = p9
"4 4 T, Q—SPC; = p;
................. > Src =
b 550 P
6 6
..................... 7 7 BN B dst — pl@
............... o P e —— B_srcl = p9
“§F 2510 B_src2 = p4
If B_srcl==A_dst, use tag from free tag buffer
10
I0: sub p9,pl,p2
I1: add plo,p9,ps
31
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3. Parallel programming (The free lunch is over)
\
« Describe an efficient parallel program for the following sequential
program using LOCK(), UNLOCK() and BARRIER().

« Explain why your cord runs correctly and why your code is efficient.

#define N 8 /* the number of grids */
#define TOL 15.0 /* tolerance parameter */
float A[N+2], B[N+2];

void solve () {
int i, done = 9;
while (!done) {
float diff = 0;
for (i=1; i<=N; i++) { /* use A as input */
B[i] = ©0.333 * (A[i-1] + A[i] + A[i+1]);
}
for (i=1; i<=N; i++) { /* use B as input */
A[i] = ©0.333 * (B[i-1] + B[i] + B[i+1]);
diff = diff + fabsf(B[i] - A[i]);
}
if (diff <TOL) done = 1;
for (i=@; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("| diff=%6.2f¥n", diff); /* for debug */

}
}
int main() {
int i;
for (i=1; i<N-1; i++) A[i] = B[i] = 1@0+i*i;
=\ solve();

~@Q' main@2.c |
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4. Building blocks for synchronization x
\

« Fetch-and-increment reads an original value from memory and
increments (adds one to) it in memory atomically

« Implement fetch-and-increment (FAT) using the load-linked/store-
conditional instruction pair

» Refer the discussion of implementing an atomic exchange EXCH
« Implement BARRIER() using FAI
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5. Cache coherence protocols X
\

 Select your favorite commercial multi-core processor
* Describe the memory organization including caches and main
memory

 cache line size, write policy, write allocate/no-allocate, direct-
mapped/set-associative, the number of caches (L1, L2, and L3?)

« Describe the cache coherence protocol used there
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6. Academic paper reading
\

« Select a paper from the list below and

Describe the problem that the authors try to solve,
Describe the key idea of the proposal,

Describe your opinion why the authors could solve the
problem although there may be many researchers try to solve
similar problems.

e List
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Emulating Optimal Replacement with a Shepherd Cache, MICRO-40, 2008

The V-Way Cache: Demand Based Associativity via Global Replacement,
ISCA'05, 2005

Skewed Compressed Caches, MICRO-47, 2014
Prophet/critic hybrid branch prediction, ISCA'04, 2004
A new case for the TAGE branch predictor, MICRO-44, 2011
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