
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

13. Thread Level Parallelism: Coherence and
Synchronization

Ver. 2019-01-27aFiscal Year 2018

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 13:20-14:50, Thr 13:20-14:50

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Key components of many-core processors

• Main memory and caches
• Caches are used to reduce latency and to lower network

traffic
• A parallel program has private data and shared data
• New issues are cache coherence and memory consistency

• Interconnection network
• connecting many modules on a chip achieving high throughput

and low latency
• Core

• High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

What kind of locality are we taking advantage of?

20

Data

32

Hit

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Cache writing policy

• Write-through
• writing is done synchronously both to the cache and to the main

memory. All stores update the main memory.
• Write-back

• initially, writing is done only to the cache. The write to the main
memory is postponed until the modified content is about to be
replaced by another cache block.

• reduces the required network and memory bandwidth.
• Which policy is better for many-core?

System

Chip

Interconnection network

Main memory (DRAM) I/O

Core Core Core Core

Proc1 Proc2 Proc4

Caches Caches Caches

Proc3

Caches

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Cache Coherence Problem

• Processors see different values for shared data u after event 3
• With write back caches, value written back to memory depends on

which cache flushes or writes back value when
• Processes accessing main memory may see stale (out-of-date) value

• Unacceptable for programming, and its frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Cache Coherence Problem

• Processors may see different values through their caches
• assuming a write-back cache
• after the value of X has been written by A, A’s cache and the

memory both contain the new value, but B’s cache does not

11

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Cache Coherence and enforcing coherence

• Cache Coherence
• All reads by any processor must return the most recently

written value
• Writes to the same location by any two processors are seen

in the same order by all processors

• Cache coherence protocols
• Snooping (write invalidate / write update)

• Each core tracks sharing status of each block
• Directory based

• Sharing status of each block kept in one location

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Snooping coherence protocols using bus network

• Write invalidate
• On write, invalidate all other copies by an invalidate broadcast
• Use bus itself to serialize

• Write cannot complete until bus access is obtained

• Write update
• On write, update all copies

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Snooping coherence protocols using bus network

• Cache lines marked as invalid, shared or modified
(exclusive)
• The shared state indicates that the block in the private

cache is potentially shared.
• The modified state indicates that the block has been

updated in the private cache; note that the modified state
implies that the block is exclusive.

• Only writes to shared lines need an invalidate broadcast
• After this, the line is marked as exclusive

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

C1

C2
C3
C4

C5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

C1

C2
C3
C4

C5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

C1

C2
C3
C4

C5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13

Snooping coherence protocols using bus network

• The coherence mechanism of a private cache

C1

C2
C3
C4

C5

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache
showing the states and state transitions for each block in the cache

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Snooping coherence protocols using bus network

• The basic coherence protocol
• MSI (Modified, Shared, Invalid) protocol

• Extensions
• MESI (Modified, Exclusive, Shared, Invalid) protocol
• MOESI (MESI + Owned) protocol

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Directory Protocols

• Snooping coherence protocols are based on the use of bus
network.
What are the protocols for mesh topology NoC?

• Directory protocols
• A logically-central directory keeps track of where the copies

of each cache block reside. Caches consult this directory to
ensure coherence.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Coherence influences cache miss rate

• Coherence misses
• True sharing misses

• Write to shared block (transmission of invalidation)
• Read an invalidated block

• False sharing misses
• Read an unmodified word in an invalidated block

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Process2

Decomposition and assignment
• Single Program Multiple Data (SPMD)

• Decomposition: there are eight tasks to compute B[i]
• Assignment: the first four tasks for process1, the last four for process2
float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0; /* variable in shared memory */

void solve_pp (int pid, int ncores) {
int i, done = 0; /* private variables */
int mymin = 1 + (pid * N/ncores); /* private variable */
int mymax = mymin + N/ncores – 1; /* private variable */
while (!done) {

float mydiff = 0;
for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i‐1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] ‐ A[i]);

}
diff = diff + mydiff;

if (diff <TOL) done = 1;
if (pid==1) diff = 0;
for (i=mymin; i<=mymax; i++) A[i] = B[i];

}
}

int main() { /* solve this using two cores */
initialize shared data A and B;
create thread1 and call solve_pp(1, 2);
create thread2 and call solve_pp(2, 2);

}

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Decomposition

Assignment

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8]

Process1

Computation

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

8

Index

Data (4 word)
Index TagValid

0
1
2
.
.
.

253
254
255

Byte
offset

20

20Tag

Hit Data

32

Block offset

Two caches of different block sizes

20Tag 10

Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

20

Data

32

Hit

One word/block Four words/block

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Synchronization

• Basic building blocks:
• Atomic exchange

• Swaps register with memory location
• Test-and-set

• Sets under condition
• Fetch-and-increment

• Reads original value from memory and increments it in memory
• These requires memory read and write in uninterruptable

instruction

• load linked/store conditional
• If the contents of the memory location specified by the load linked

are changed before the store conditional to the same address, the
store conditional fails

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

Orchestration

• LOCK and UNLOCK around critical section
• Set of operations we want to execute atomically

• BARRIER ensures all reach here
float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0; /* variable in shared memory */

void solve_pp (int pid, int ncores) {
int i, done = 0; /* private variables */
int mymin = 1 + (pid * N/ncores); /* private variable */
int mymax = mymin + N/ncores – 1; /* private variable */
while (!done) {

float mydiff = 0;
for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i‐1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] ‐ A[i]);

}
LOCK();
diff = diff + mydiff;
UNLOCK();

BARRIER();
if (diff <TOL) done = 1;
BARRIER();
if (pid==1) diff = 0;
for (i=mymin; i<=mymax; i++) A[i] = B[i];
BARRIER();

}
}

(1) load diff
(2) add
(3) store diff

These operations must be executed
atomically

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Implementing an atomic exchange EXCH

• Load linked/store conditional instructions
• If the contents of the memory location specified by the load

linked are changed before the store conditional to the same
address, the store conditional fails

• Store conditional instruction
• it returns 1 if it was successful and a 0 otherwise

• EXCH R4,0(R1) ; exchange R4 and 0(R1) atomically

try: ADD R3,R4,R0 ; move exchange value, R3<=R4
LL R2,0(R1) ; load linked
SC R3,0(R1) ; store conditional
BEQ R3,R0,try ; branch if store fails (R3==3)
ADD R4,R2,R0 ; put load value in R4, R4<=R2

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Implementing Locks using coherence

• Spin lock
• R1 is the address of the lock variable and its initial value is 0.
• We can cache the lock using the coherence mechanism to maintain

the lock value coherently.
• This code spins by doing read on a local copy of the lock until it

successfully sees that the lock is available (lock variable is 0).

lockit: LD R2,0(R1) ; load of lock
BNE R2,R0,lockit ; not available‐spin if R2==1
ADDI R2,R0,1 ; load locked value, R2<=1
EXCH R2,0(R1) ; swap
BNE R2,R0,lockit ; branch if lock wasn’t 0

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Implementing Barriers using coherence

• This code counts up the arrived threads using a shared variable
counter.

• If all threads counts up the variable, the last thread set the shared
variable flag to exit the barrier.

BARRIER(){
LOCK();

if (counter == 0) flag = 0; /* counter and flag are shared data */
mycount = counter++; /* mycount is a private variable */

UNLOCK();
if (mycount == p) {

counter = 0;
flag = 1;

}
else while (flag == 0) { }; /* wait until all threads reach BARRIER */

}

