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Key components of many-core processors

• Main memory and caches
• Caches are used to reduce latency and to lower network 

traffic
• A parallel program has private data and shared data
• New issues are cache coherence and memory consistency

• Interconnection network
• connecting many modules on a chip achieving high throughput 

and low latency 
• Core

• High-performance superscalar
processor providing a hardware 
mechanism to support thread 
synchronization
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MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words (4KB)
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Cache writing policy

• Write-through
• writing is done synchronously both to the cache and to the main 

memory. All stores update the main memory.
• Write-back

• initially, writing is done only to the cache. The write to the main 
memory is postponed until the modified content is about to be 
replaced by another cache block.

• reduces the required network and memory bandwidth.
• Which policy is better for many-core?
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Cache Coherence Problem

• Processors see different values for shared data u after event 3
• With write back caches, value written back to memory depends on 

which cache flushes or writes back value when
• Processes accessing main memory may see stale (out-of-date) value

• Unacceptable for programming, and its frequent!
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Cache Coherence Problem

• Processors may see different values through their caches
• assuming a write-back cache
• after the value of X has been written by A, A’s cache and the 

memory both contain the new value, but B’s cache does not

11



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Cache Coherence and enforcing coherence

• Cache Coherence 
• All reads by any processor must return the most recently 

written value
• Writes to the same location by any two processors are seen 

in the same order by all processors

• Cache coherence protocols
• Snooping (write invalidate / write update)

• Each core tracks sharing status of each block
• Directory based

• Sharing status of each block kept in one location
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Snooping coherence protocols using bus network

• Write invalidate
• On write, invalidate all other copies by an invalidate broadcast
• Use bus itself to serialize

• Write cannot complete until bus access is obtained

• Write update
• On write, update all copies
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Snooping coherence protocols using bus network

• Cache lines marked as invalid, shared or modified
(exclusive)
• The shared state indicates that the block in the private 

cache is potentially shared.
• The modified state indicates that the block has been 

updated in the private cache; note that the modified state 
implies that the block is exclusive.

• Only writes to shared lines need an invalidate broadcast
• After this, the line is marked as exclusive
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Snooping coherence protocols using bus network

• The coherence mechanism of a private cache
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Snooping coherence protocols using bus network

• A write invalidate, cache coherence protocol for a private write-back cache 
showing the states and state transitions for each block in the cache



CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Snooping coherence protocols using bus network

• The basic coherence protocol
• MSI (Modified, Shared, Invalid) protocol

• Extensions
• MESI (Modified, Exclusive, Shared, Invalid) protocol
• MOESI (MESI + Owned) protocol
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Directory Protocols

• Snooping coherence protocols are based on the use of bus 
network. 
What are the protocols for mesh topology NoC? 

• Directory protocols
• A logically-central directory keeps track of where the copies 

of each cache block reside. Caches consult this directory to 
ensure coherence.
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Coherence influences cache miss rate

• Coherence misses
• True sharing misses

• Write to shared block (transmission of invalidation)
• Read an invalidated block

• False sharing misses
• Read an unmodified word in an invalidated block
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Process2

Decomposition and assignment
• Single Program Multiple Data (SPMD)

• Decomposition: there are eight tasks to compute B[i]
• Assignment:  the first four tasks for process1, the last four for process2
float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0;         /* variable  in shared memory */

void solve_pp (int pid, int ncores) {
int i, done = 0;                    /* private variables */
int mymin = 1 + (pid * N/ncores);   /* private variable  */
int mymax = mymin + N/ncores – 1;   /* private variable  */
while (!done) {

float mydiff = 0;
for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i‐1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] ‐ A[i]);

}
diff = diff + mydiff;

if (diff <TOL) done = 1;
if (pid==1) diff = 0;
for (i=mymin; i<=mymax; i++) A[i] = B[i];

}
}

int main() { /* solve this using two cores */
initialize shared data A and B;   
create thread1 and call solve_pp(1, 2);
create thread2 and call solve_pp(2, 2);

}
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Synchronization

• Basic building blocks:
• Atomic exchange

• Swaps register with memory location
• Test-and-set

• Sets under condition
• Fetch-and-increment

• Reads original value from memory and increments it in memory
• These requires memory read and write in uninterruptable 

instruction

• load linked/store conditional
• If the contents of the memory location specified by the load linked 

are changed before the store conditional to the same address, the 
store conditional fails
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Orchestration 

• LOCK and UNLOCK around critical section
• Set of operations we want to execute atomically

• BARRIER ensures all reach here
float A[N+2], B[N+2]; /* these are in shared memory */
float diff=0.0;       /* variable  in shared memory */

void solve_pp (int pid, int ncores) {
int i, done = 0;                    /* private variables */
int mymin = 1 + (pid * N/ncores);   /* private variable  */
int mymax = mymin + N/ncores – 1;   /* private variable  */
while (!done) {

float mydiff = 0;
for (i=mymin; i<=mymax; i++) {

B[i] = 0.333 * (A[i‐1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] ‐ A[i]);

}
LOCK();
diff = diff + mydiff;
UNLOCK();

BARRIER();
if (diff <TOL) done = 1;
BARRIER();
if (pid==1) diff = 0;
for (i=mymin; i<=mymax; i++) A[i] = B[i];
BARRIER();

}
}

(1) load diff
(2) add
(3) store diff

These operations must be executed 
atomically

After all cores update the diff,  
if statement must be executed. 

if (diff <TOL) done = 1;
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Implementing an atomic exchange EXCH

• Load linked/store conditional instructions
• If the contents of the memory location specified by the load 

linked are changed before the store conditional to the same 
address, the store conditional fails

• Store conditional instruction
• it returns 1 if it was successful and a 0 otherwise

• EXCH R4,0(R1)     ; exchange R4 and 0(R1) atomically

try: ADD R3,R4,R0 ; move exchange value, R3<=R4
LL R2,0(R1) ; load linked
SC R3,0(R1) ; store conditional
BEQ R3,R0,try ; branch if store fails (R3==3)
ADD R4,R2,R0 ; put load value in R4, R4<=R2
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Implementing Locks using coherence

• Spin lock
• R1 is the address of the lock variable and its initial value is 0.
• We can cache the lock using the coherence mechanism to maintain 

the lock value coherently.
• This code spins by doing read on a local copy of the lock until it 

successfully sees that the lock is available (lock variable is 0).

lockit: LD  R2,0(R1) ; load of lock
BNE R2,R0,lockit  ; not available‐spin if R2==1
ADDI R2,R0,1 ; load locked value, R2<=1
EXCH R2,0(R1) ; swap
BNE R2,R0,lockit ; branch if lock wasn’t 0
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Implementing Barriers using coherence

• This code counts up the arrived threads using a shared variable 
counter.

• If all threads counts up the variable, the last thread set the shared 
variable flag to exit the barrier. 

BARRIER(){
LOCK();

if (counter == 0) flag = 0; /* counter and flag are shared data */
mycount = counter++;        /* mycount is a private variable    */

UNLOCK();
if (mycount == p) {

counter = 0;
flag = 1;

}
else while (flag == 0) { };     /* wait until all threads reach BARRIER */

}


