Fiscal Year 2018

N

Course humber: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

11. Multi-Processor: Distributed Memory and
Shared Memory Architecture
&

www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 Kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYSQYECH 1

Flynn's taxonomy (1996)
AN

« A classification of computer architectures, proposed by Michael J.
Flynn in 1966. The four classifications are based upon the number of
concurrent instruction streams and data streams available in the
architecture.

« SISD (Single Instruction stream, Single Data stream)

« SIMD (Single Instruction stream, Multiple Data stream)

« MISD (Multiple Instruction stream, Single Data stream)

« MIMD (Multiple Instruction stream, Multiple Data stream)

Instruction stream 1 1 uu uu
Data stream 1 1111 1 1111

SISD SIMD MISD MIMD

;\9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

SIMD Variants

« Vector architectures
e SIMD extensions
e Graphics Processing Units (GPUs)

« SIMD variants exploit data-level parallelism

« Instruction-level parallelism in superscalar processors
* Thread-level parallelism in multicore processors

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Vector architecture

« Computers designed by Seymour Cray starting in the 1970s
 Basic idea:

* Read sets of data elements into "vector registers”
e Operate on those registers

« Disperse the results back into memory

=
=
=

|
==
==
==
==
==

——
=

v

Cray Supercomputer

K CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

DAXPY in MIPS Instructions

Example: DAXPY (double precision a x X + YY)

L.D FO.a ; load scalar a

DADDIU R4,Rx #512 ; upper bound of what to load
Loop: L.D F2,0(Rx) ; load X[i]

MUL.D F2,F2,FO ;ax X[i]

L.D F4,0(Ry) ; load Y[i]

ADD.D F4,F2,F2 ;ax X[i]+ YI[i]

S.D F4,9(Ry) ; store into Y[i]

DADDIU Rx,Rx #8 ; increment index to X

DADDIU Ry,Ry #8 ; increment index to Y

SUBBU R20,R4 Rx , compute bound

BNEZ R20,Loop ; check if done

» Requires almost 600 MIPS operations

A@‘

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

DAXPY in VMIPS (MIPS with Vector) Instructions
\
« ADDV.D . add two vectors X

« ADDVS.D : add vector to a scalar
e LV/SV . vector load and vector store from address

« Example: DAXPY (double precision a*X+Y)

L.D FO,a ; load scalar a

LV V1 Rx ; load vector X

MULVSD V2V1FO : vector-scalar multiply

LV V3,Ry ; load vector Y -
ADDV.D V4,v2 V3 ; add LI
sV Ry,v4 ; store the result

Requires 6 instructions

;"9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

=3

Flynn's taxonomy (1996)

=V

AN
\

3
A classification of computer architectures, proposed by Michael J. X
Flynn in 1966. The four classifications are based upon the number of
concurrent instruction streams and data streams available in the
architecture.

« SISD (Single Instruction stream, Single Data stream)

« SIMD (Single Instruction stream, Multiple Data stream)

« MISD (Multiple Instruction stream, Single Data stream)

« MIMD (Multiple Instruction stream, Multiple Data stream)

)))) u

n

MIMD

S /S S S

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

Distributed Memory Multi-Processor Architecture

A PC cluster or parallel computers for higher performance

Each memory module is associated with a processor
Using explicit send and receive functions (message passing) to obtain the data

required.

« Who will send and receive data?

\

PC1 PC2 PC3 PC4
Chip Chip Chip Chip
Procl Proc2 Proc3 Proc4
A A A A
A\ 4 A\ 4 \ 4 \ 4
Caches Caches Caches Caches
A A A A
Memory Memory Memory Memory
(DRAM) (DRAM) (DRAM) (DRAM)
A A A A
\ 4 \ 4 \ 4 \ 4
Interconnection network

~@9‘ PC cluster

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Shared Memory Multi-Processor Architecture

« All the processors can access the same address space of the main memory
(shared memory) through an interconnection network.

* The shared memory or shared address space (SAS) is used as a means for
communication between the processors.

e What are the means to obtain the shared data?
* What are the advantages and disadvantages of shared memory?

System
Chip Chip Chip Chip
Procl Proc?2 Proc3 Proc4
}) 3 !
Caches Caches Caches Caches
Interconnection network

A A

A 4 A 4

Main memory (DRAM) I/0

™

A@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Shared memory many-core architecture

interconnection network.

Single chip integrates many cores (conventional processors) and an

System
Chip
Core Core Core Core
Procl Proc? Proc3 Proc4
Caches Caches Caches Caches
Interconnection network
Intel Skylake-X, Core i9-7980XE, 2017 Main memory (DRAM) I/0

;\9‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

10

Th

* Programmers have to worry much about performance and concurrency

e free lunch is over

 Parallel programming

<

Free Lunch

Programmers haven't
really had to worry
much about
performance or
concurrency because
of Moore's Law

Why we did not see 4GHz
processors in Market?

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software by Herb Sutter, 2005

The traditional approach
to application
performance was to
simply wait for the next
generation of processor;
most software
developers did not need
to invest in performance
tuning, and enjoyed a
“free lunch” from
hardware
improvements.

SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

11

Four steps in creating a parallel program

Decomposition of computation in tasks
Assignment of tasks to processes
Orchestration of data access, comm, synch.
Mapping processes to processors

»wp e

Partitioning

|
e O A ¢ v
c O S Cc p
o O i h p
T O 2 : v P | P
0 m t
_S—>O© — e — > — I ‘ _g_>
[O n a
F OO t f P, —1 Ps
o DO 0
" P "

Sequential Tasks Processes Parallel Processors
computation program
L=
*@ Adapted from Paralle/ Computer Architecture, David E. Culler

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Simulating ocean currents

0 0000000 O0O0
O 0000000 O0O0
O 0000000 O0O0
0000000 O0O0
O 0000000 O0O0
0000000 O0O0
0000000 O0O0
O 0000000 O0O0
0000000 O0O0
0 0000000 O0O0

\

(a) Cross sections (b) Spatial discretization of a cross section

e Model as two-dimensional grids

« Discretize in space and time

« finer spatial and temporal resolution enables greater accuracy
* Many different computations per time step

« Concurrency across and within grid computations
« We use one-dimensional grids for simplicity

;"@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

13

Sequential version as the baseline

« A sequential program mainOl.c and the execution result

« Computations in blue color are fully parallel

#define N 8 /* the number of grids */
#define TOL 15.0 /* tolerance parameter */
float A[N+2], B[N+2];

void solve () {
int i, done = ©;
while (!done) {
float diff = 0;
for (i=1; i<=N; i++) {
B[i] = ©.333 * (A[i-1] + A[i] + A[i+1]);
diff = diff + fabsf(B[i] - A[i]);

}
if (diff <TOL) done = 1;
for (i=1; i<=N; i++) A[i] = B[i];

for (i=0; i<=N+1; i++) printf("%6.2f ", B[i]);
printf("| diff=%6.2f¥n", diff); /* for debug */

}
}
int main() {
int i;
for (i=1; i<N-1; i++) A[i] = 1l@@+i*i;
solve();

O O 0O OO0 OO0

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

68.
57.
50.
45,
42.
39.
37.
34.
32.
31.
29.
27.
26.
25.
23.
22.
21.

26 104.
94.
87.
81.
76.
71.
67.
63.
60.
57.
54.
51.
48.
46.
44,
42.
40.

55
48
83
38
54
08
88
89
o7
39
84
41
o7
83
68
59

56
03
15
45
35
81
67
89
40
19
21
46
89
50
26
17
20

109.
11e.
106.
101.
96.
91.
87.
82.
78.
74.
70.
67.
64.
61.
58.
55.
53.

56
11
97
99
92
87
10
62
44
55
92
52
34
35
54
88
38

116.
117.
112.
107.
102.

97.

93.

89.
.03
81.
77.
74.
71.
67.
.02
62.
59.

55 125.
10 109.
14 104.
98.
94.
90.
87.
83.
80.
77.
74.
71.
68.
65.
63.
60.
58.

62
61
87
34
06

23
63
23
00
94

24
60

54
56
06
54
38
55
02
67
45
35
36
47
67
97
36
85
42

86.
.83
.72
77.
74.
72.
70.
68.
66.
64.
62.
60.
58.
56.
.34
52.
50.

85

91

27
92
91
89
87
81
72
62
52
43
37

34
39

45,
44.
48.
49.
49.
49.
48.
48.
47.
45.
44.
43.
42.
40.
.49
38.
36.

29
02
26
17
64
44
90
09
10
98
77
49
17
84

14
81

.00
15.
19.
22.
23.
.49
24.
24.
24.
23.
23.
22.
22.
21.
20.
20.
19.

08
68
63
91

62
48
17
73
21
64
02
38
72
05
38

O 0O 0O 0O 00000000

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

diff=129.
55.
42.
31.
26.
23.
22.
21.
20.
19.
18.
17.
17.
16.
15.
15.
14.

diff=
diff=
diff=
diff=
diff=
diff=
diff=
diff=
diff=
diff=
diff=
diff=
diff=
diff=
diff=
diff=

32
76
50
68
88
80
12
06
26
47
70
95
23
53
85
20
58

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

14

Decomposition and assignment

» Single Program Multiple Data (SPMD)
« Decomposition: there are eight tasks to compute B[i]
« Assignment: the first four tasks for processl, the last four for process?

float A[N+2], B[N+2]; /* these are in shared memory */
float diff; /* variable in shared memory */

void solve_pp (int pid, int ncores) { Computation

int i, done = 9; /* private variables */
int mymin = 1 + (pid * N/ncores); /* private variable */
int mymax = mymin + N/ncores - 1; /* private variable */
while (!done) { Decomposition
float mydiff = 0;
for (i=mymin; i<=mymax; i++) {
B[i] = ©0.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]); B[1]1 || B[2]||B[3]||B[4]]||B[5]||B[6]||B[7]]|B[8]

}
diff = diff + mydiff;

if (diff <TOL) done = 1; .
for (i=mymin; i<=mymax; i++) A[i] = B[i]; A55|gnmen1'

Processl Process?2

int main() { /* solve this using two cores */
initialize shared data A and B;
create threadl and call solve pp(1, 2); B[1] || B[2]|| B[3]]|| B[4] B[5]||B[6]||B[7]]|BI[8]
create thread2 and call solve pp(2, 2);

}

~ ="
\Q\ 15

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Orchestration

e LOCK and UNLOCK around critical section

« Set of operations we want to execute atomically

e BARRIER ensures all reach here

float A[N+2], B[N+2]; /* these are in shared memory */
float diff; /* variable 1in shared memory */

void solve pp (int pid, int ncores) {
int i, done = ©;

while (!done) {

float mydiff = 0;

for (i=mymin; i<=mymax; i++) {
B[i] = ©0.333 * (A[i-1] + A[i] + A[i+1]);
mydiff = mydiff + fabsf(B[i] - A[i]);

}

LOCK();

diff = diff + mydiff;

UNLOCK () ;

BARRIER();
if (diff <TOL) done = 1;
for (i=mymin; i<=mymax; i++) A[i] = B[i];

int mymin = 1 + (pid * N/ncores); /* private variable
int mymax = mymin + N/ncores - 1; /* private variable

/* private variables */

*/
*/

=)

Asrsii‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

These operations must be executed
atomically

(1) load diff
(2) add
(3) store diff

After all cores update the diff,
if statement must be executed.

if (diff <TOL) done = 1;

16

Key components of many-core processors

e Main memory and caches

« Caches are used to reduce latency and to lower network

traffic

* A parallel program has private data and shared data
* New issues are cache coherence and memory consistency

e Tnterconnection network

* connecting many modules on a chip achieving high throughput

and low latency

e Core

« High-performance superscalar
processor providing a hardware
mechanism to support thread
synchronization

=)

A@‘

System

Chip

Core

Core

Core

Procl

Proc2

Proc3

Proc4

)

)

Caches

Caches

Caches

Caches

A 4

A 4

Interconnection network

v

Main memory (DRAM)

I/0

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

17

