Fiscal Year 2018

N

Course humber: CSC.T433
School of Computing,
M Graduate major in Computer Science

Advanced Computer Architecture

1. Design and Analysis of Computer Systems

f
www.arch.cs.titech.ac.jp/lecture/ACA/

Room No.W936 Kenji Kise, Department of Computer Science
Mon 13:20-14:50, Thr 13:20-14:50 Kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYSQYECH 1

Syllabus (1/3)

Course description and aims

processors and multi-core processors.

This course aims to provide students with cutting-edge technologies and future trends of computer architecture with focusing on a
microprocessor which plays an important role in the downsizing, personalization, and improvement of performance and power consumption of
computer systems such as PCs, personal mobile devices, and embedded systems. <br=In this course, first, along with important concepts of
computer architecture, students will learn from instruction set architectures to mechanisms for extracting instruction level parallelism used in
out-of-order superscalar processors. After that, students will learn mechanisms for exploiting thread level parallelism adopted in multi-

Student learning outcomes

By taking this course, students will learn:<br=(1) Basic principles for building today's high-performance computer systems=<br={2)
Mechanismes for extracting instruction level parallelism used in high-performance microprocessors<br=(3) Methods for exploiting thread level
parallelism adopted in multi-processors and multi-core processors<br={4) New inter-relationship between software and hardware

Keywords

Computer Architecturs, Processor, Embedded System, multi-processor, multi-core processor

Competencies that will be developed

Intercultural skills

Communication skills

Specialist skills

Critical thinking skills

Practical andfor problem-solving skills

V'

Class flow

Before coming to class, students should read the course schedule and check what topics will be covered. Required learning should be
completed outside of the classroom for preparation and review purposes.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Syllabus (2/3)

Textbook(s)

John L. Hennessy, David A. Patterson. Computer Architecture A Quantitative Approach, Fifth Edition. Morgan Kaufmann Publishers Inc., 2012

Reference books, course materials, ete.

William James Dally, Brian Patrick Towles. Principles and Practices of Interconnection Metworks. Morgan Kaufman Publishers Inc., 2004,

Assessment criteria and methods

Students will be assessed on their understanding of instruction level parallelism, multi-processor, and thread level parallelism. Students’
course scores are based on the mid-term report (40%) and final report (60%0).

Related courses

CSC.T363 @ Computer Architecture
CSC.T341 : Computer Logic Design

Prerequisites (i.e., required knowledge, skills, courses, etc.)

Mo prerequisites are necessary, but enrollment in the related courses is desirable.

Contact information (e-mail and phone)

Kise Kenji: kise@cs.titech.ac.jp, 03-5734-3698 Miyazaki Jun: miyazaki@cs.titech.ac.jp, 03-5734-2687

Office hours

Contact by e-mail in advance to schedule an appointrment.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Processor fabrication: ingot and wafer
_7 e — pn S Sy

Silicon Ingot

Silicon, the most abundant element
on earth except for oxygen, is used because
it is a natural semiconductor.

QSCT{’B Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Processor fabrication: wafer and die
rReEsser Teb f

‘-— - 1 — .| -
'. _- -.,r‘;;__., ——_ — ‘ﬂe\l

T Tay
R e N . N

S e e o O S e,
AR T S N p R R I S
. i

e =~
——

Intel, Industry-Leading Transistor Performance Demonstrated on Intel’s 90-nanometer Logic Process

x CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Processor fabrication: die and packaging

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

e

The birth of microprocessors
ey, ———— e

.h."_- -9 — . :] ::-:E
QRS- IR R S

+ ¥
- L ¥ - - L
| [’ e e O T S)
. [
- r -

.........

Name Year # of transistors
Intel 4004 1971 2,250

E CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Moore's Law

=)

A@‘

\

\
Moore's law is the observation that the number of transistors in‘%%
a dense integrated circuit doubles about every two years. The
observation is named after Gordon Moore, the co-founder of
Fairchild Semiconductor and Intel, whose 1965 paper described

a doubling every year in the number of components per

integrated circuit, and projected this rate of growth would
continue for at least another decade. In 1975, looking forward to
the next decade, he revised the forecast to doubling every two
years. The period is often quoted as 18 months because of a
prediction by Intel executive David House (being a combination

of the effect of more transistors and the transistors being
faster).

WIKIPEDIA

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Moore's Law

VISUALIZING PROGRESS

i
‘ _I: -t I_'E] | | S | S -t O I_S W e re e O ‘ e If the transistors in @ microprocessor were represented by people,
the following timeline gives an idea of the pace of Moore’s Law

2,300 134,000 32 Million 1.3 Billion

Large stadium capacity Population of Tokyo Population of China

Average music hall capacity

1970 18920 2000 2011

Intel 4004 Intel 286 Pentium Il Core i¥ Extreme Edition

Now imagine that those 1.3 billion people could fit onstage in the original music hall. That's the scale of Moore’s Law.

Moore’s Law

Moore'’s Law states that the transistor density on integrated
circuits doubles about every two years. Moore's Law has been
amazingly accurate over time. In 1971, the Intel 4004 processor
held 2,300 transistors. In 2005, the Intel® tanium® processor
held more than 1 billion transistors. Intel continues to drive
Moore's Law, increasing functionality and performance, and
helping to bring growth to industries worldwide.

i
g
g
o
8
2

1870 1975

Year of Introduction

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Moore's Law

Transistors'

In 1265, Gordon Moore
sketched out his
prediction of the pace of
silicon technaology.
Decades lat
“Moore’s Law”
remains true, driven
largely by Int
unparalleled

Hanium® dual-core processor

1,000,000,000

Moore’s Law

Moore’s Law states that the transistor density on integrated
circuits doubles about every two years. Moore's Law has been
amazingly accurate over time. In 1971, the Intel 4004 processor
held 2,300 transistors. In 2005, the Intel® Hanium® processor
held more than 1 billion transistors. Intel continues to drive
Moore's Law, increasing functionality and performance, and
helping to bring growth to industries worldwide.

Il processor
um® 4 processor

100,000,000

4004 processer

8008 processor

8080 processer

8086 processor

8088 processor

286 processor

i386™ processor

1486™ processor
Pentium® processor
Pentium® Pro processar

10,000,000

1970 1975 1990

Year of Introduction

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Growth in clock rate of microprocessors

10,000 1
Intel Pentium4 Xeon INtel Nehalem Xeon
3200 MHz in 2003 3330 MHz in 2010
Intel Pentium |1l L
1000 MHz in 2000 -
1000 - . e
Digital Alpha 21164A
500 MHz in 1996
N 5 1 r
g Digital Alpha 21064 s
ey 150 MHz in 1992
g 100 !
2 MIPS M2000
O 25 MHz in 1989
40%/year
10 4 ez, Sun-4 SPARC
________ 16.7 MHz in 1986
Digital VAX-11/780
5 MHz in 1978
15%/year
1] i | T | I L]]]] L] |] | | ;
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
E C

rom CAQA 5™ edition
SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH From CAQ

Clock rate is mainly determined by x
\

» Switching speed of gates (transistors)

* The number of levels of gates

* The maximum number of gates cascaded in series in any
combinational logics.

* In this example, the number of levels of gates is 3.
e Wiring delay and fanout

L :
| Register
Register ANngate_\—-D__

OR gate _:>_

AND gate

=)

~ ="
) 12

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Growth in processor performance

_,V-__i—v—\

100,000

Performance (vs. VAX-11/780)

10,000 e Mﬂg%l-ﬁ-lhlnnﬁd 2.8 GHz 22

Inlel Xgon & cores, 3.3 GHzZ (boost 1o 3.6 GHZ)
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHZ)
Intel Core i¥ Extrems 4 cores 3.2 GHz (boost to 3.5 GHz

Inlel Care 2 Extreme 2 cores, 2.9 EHE

flen, 2.6 GHzZ AN HE
Intel ¥Xeon EE 32 G

Intel DESOEMYA matherboard (3.06 GHz, Pentium 4 processer with Hyper-Threading Technelogy) ﬁ.l:hﬁ 6,621
IBM Powerd, 1.3 GHz

Intel WEB2D mothardsoard, 1.0 GHz Pantium Il processor

Professianal Workstation HP‘1 000, 887 MHz 212644

y [070] 0 0 T TTTTIPYCIUURRNRRPYIRURNSSII & - 1 Fo il e e U b e e w e e m m o o«

100 - i A——]

IBM REE000/540, 30 MHz,
MIFS M2000, 25 MHz
MIPS MM23, 16.7 MHz

10 9 Sl aiH0, 1677 Wiz,
WA BT00, 22 MHz

AX-11780, 5 MHz o=t

)

1.5, YAX-11/785

1

From CAQA 5*h edition
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

13

Which is faster?

\
From Tokyo to Hiroshima X

Time & Max Throughput
Cost Speed Passengers (Spee% xpP)
; 1:20 800km/h 85,510
Boeing 737 35 000yen | (503km/h) 170 (503 x 170)
, 4:00 270km/h 266,500
Nozomi | 13 000ven | (20skm/my | 1390 | (205 x1,300)

+ Time to run the task (ExTime)

- Execution time, response time, latency
- Tasks per day, hour, week, sec, ns ...
(Performance)
- Throughput, bandwidth

H=D
*@ Based on the lecture slide of David E Culler
® (CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Defining (Speed) Performance x
\

« Normally interested in reducing

« Response time (execution time) — the time between the start and
the completion of a task or a program

« TImportant to individual users
« Thus, fo maximize performance, need to minimize execution time

performancey = 1 / execution_timey

If X is n times faster than Y, then

performance, execution_timey
-------------------- = e = ¢
performancey execution_timey

= Throughput — the total amount of work done in a given time
= Important to data center managers

= Decreasing response time almost always improves throughput

15

P (SC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Performance Factors X
\

« Want to distinguish elapsed time and the time spent on our task

* CPU execution time (CPU time) : time the CPU spends working on a task
* Does not include time waiting for I/O or running other programs

CPU execution time _ # CPU clock cycles .
= X clock cycle time
for a program for a program
or
CPU executiontime ____# CPU clock cycles for a program __
for a program clock rate

= Can improve performance by reducing either the length of the clock cycle
or the number of clock cycles required for a program

™

~ ="
@\ 16

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Performance Factors

™

CPU execution time _ # CPU clock cycles for a program

for a program clock rate

Performance = clock rate x 1/ # CPU clock cycles for a program

e Performance = f x IPC

« f: frequency (clock rate)
« IPC: retired instructions per cycle

49‘

\

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

int flag = 1;

int foo(){
while(flag);

¥

17

Syllabus (3/3)

Course schedule/Required learning

Course schedule

Required learning

Class 1

Design and Analysis of Computer Systems

Understand the basic of design and analysis of computer
systems.

Class 2

Instruction Set Architecturs

Understand the examples of instruction set architectures

Class 3

Mermory Higrarchy Design

Understand the organization of memory hierarchy
designs

Class 4

Pipelining

Understand the idea and organization of pipelining

Class 5

Instruction Level Parallelism:

Concepts and Challenges

Understand the idea and requirements for exploiting
instruction level parallelism

Class &

Instruction Level Parallelism:

Instruction Fetch and Branch Prediction

Understand the organization of instruction fetch and
branch predictions to exploit instruction level parallelism

Class 7

Instruction Level Parallelism

: Advanced Technigues for Branch Prediction

Understand the advanced technigues for branch
prediction to exploit instruction level parallelism

Class &

Instruction Level Parallelism:

Dynamic Scheduling

Understand the dynamic scheduling to exploit instruction
level parallelism

Class 9

Instruction Level Parallelism:

Speculation

Exploiting ILP Using Multiple Issus and

Understand the multiple issue mechanism and
speculation to exploit instruction level parallelism

Class 10

Class 11

Instruction Level Parallelism:

Dut-of-order Execution and Multithreading

Multi-Processor: Distributed Memory and Shared Memory Architecture

Understand the out-of-order execution and

multithreading to exploit instruction level parallelism

Understand the distributed memory and shared memory
architecture for multi-processors

Class 12

Thread Level Parallelism: Coherence and Synchronization

Understand the coherence and synchronization for
thread level parallelizm

Class 13

Thread Level Parallelism: Memory Consistency Model

Understand the memory consistency model for thread
level parallelism

Class 14

Thread Level Parallelism: Interconnection Metwork

Understand the interconnection network for thread level
parzllelism

Class 15

Thread Level Parallelism: Many-core Processor and Network-on-chip

Understand the many-core processor and network-on-
chip for thread level parallelism

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

From multi-core era to many-core era

Many-core Era
Massively parallel

applications
: 100
Increasing HW
Threads
Per Socket Multi-core Era
10 Scalar and

parallel applications

2003 2005 2007 2009 2011

\

Figura 1: Curmrent and expected eras of Intal® processor architectures

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

k CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Pollack's Rule

\

* Pollack's Rule states that microprocessor "performance 3%
increase due to microarchitecture advances is roughly
proportional o the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

i 39' WIKIPEDIA

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

From multi-core era to many-core era

EV6 EV6 EV6
Evd
EVE- EVE EVE EVE
EVS
EVE EV6 EV6 EV6

Figure 1. Relative sizes of the cores used in
the study

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36

;"@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

21

Intel Sandy Bridge, January 2011

e 4 t0 8 core

, Processor
Graphlcs

m Memory Controller 1/0

& CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

System
Agent &
Memory

Controller

including
DMI, Display
and Misc. IJO

Intel Skylake-X, Core i9-7980XE, 2017

e 18 core

;"@‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

23

Syllabus (3/3)

Course schedule/Required learning

Course schedule

Required learning

Class 1

Design and Analysis of Computer Systems

Understand the basic of design and analysis of computer
systems.

Class 2

Instruction Set Architecturs

Understand the examples of instruction set architectures

Class 3

Mermory Higrarchy Design

Understand the organization of memory hierarchy
designs

Class 4

Pipelining

Understand the idea and organization of pipelining

Class 5

Instruction Level Parallelism:

Concepts and Challenges

Understand the idea and requirements for exploiting
instruction level parallelism

Class &

Instruction Level Parallelism:

Instruction Fetch and Branch Prediction

Understand the organization of instruction fetch and
branch predictions to exploit instruction level parallelism

Class 7

Instruction Level Parallelism

: Advanced Technigues for Branch Prediction

Understand the advanced technigues for branch
prediction to exploit instruction level parallelism

Class &

Instruction Level Parallelism:

Dynamic Scheduling

Understand the dynamic scheduling to exploit instruction
level parallelism

Class 9

Instruction Level Parallelism:

Speculation

Exploiting ILP Using Multiple Issus and

Understand the multiple issue mechanism and
speculation to exploit instruction level parallelism

Class 10

Instruction Level Parallelism:

Dut-of-order Execution and Multithreading

Understand the out-of-order execution and
multithreading to exploit instruction level parallelism

Class 11

Multi-Processor: Distributed Memory and Shared Memory Architecture

Understand the distributed memory and shared memory
architecture for multi-processors

Class 12

Thread Level Parallelism: Coherence and Synchronization

Understand the coherence and synchronization for
thread level parallelizm

Class 13

Thread Level Parallelism: Memory Consistency Model

Understand the memory consistency model for thread
level parallelism

Class 14

Thread Level Parallelism: Interconnection Metwork

Understand the interconnection network for thread level
parzllelism

Class 15

Thread Level Parallelism: Many-core Processor and Network-on-chip

Understand the many-core processor and network-on-
chip for thread level parallelism

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Homework 1

\
1. Install Icarus Verilog 3%

2. Install GTKWave

3. Simulate the behavior of a 4-bit counter (sample circuit 1) using
Icarus Verilog, and confirm the waveforms using GTKWave.

4. Modify the circuit and HDL code for another typical circuit
(like a decoder, LFSR and ALU), then simulate and confirm the
waveforms.

5. Submit a report printed on A4 paper at the beginning of the
next lecture.

« The report should include a block diagram, a source code in Verilog
HDL, and obtained waveforms of your circuit.

~ "\ ="
) 25

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

Icarus Verilog for Windows

« Installing Verilog HDL Simulation Environment (Windows)

=[=] =]

& Icarus verilog for Windows X +

& C 1t @ REZNTLRLEE | bleyer.org/icarus/ a % @8 0 :

ICARUS VERILOG

Icarus Verilog for Windows

Icarus Verilog is a free compiler implementation for the IEEE-1364 Verilog hardware description language. Icarus is maintained by Stephen Williams and
it is released under the GNU GPL license.

In this page you will find easy to install Icarus Verilog packages compiled with the MinGW toolchain for the Windows environment. GTKWave for Win32 is
also included in the latest releases. The installers have been created with Jordan Rusell's Inno Setup free installer utility.

Download

You can find Icarus Verilog sources and binaries for most platforms at the Icarus site FTP. The sources available here have been compressed with 7-zip.

« iverilog-10.1.1-x64_setup.exe [8.77MB]

« iverilog-10.0-x86_setup.exe [11.1MB]

« iverilog-20130827_setup.exe (development snapshot) [11.2MB]

« iverilog-0.9.7_setup.exe (latest stable release) [10.5ME]

« iverilog-0.9.6_setup.exe [10.4MB]

« iverilog-0.8.6_setup.exe (latest release 0.8 series) [1.29MB] iverilog-0.8.6.7z [800kB]

« iverilog-0.7-20040706_setup.exe [1.09MB] iverilog-0.7-20040706.7z [588kB]
Resources

Here are some pointars to interesting Verilog related resources.

« Verilog Resources

* GTKWave Electronic Waveform Viewer

* GTKWave for Windows

« IVI, a graphical frontend for Icarus

« Eclipse Verilog Editor

« Getting started with Icarus Verilog on Windows

« Verilog syntax highlighting for UltraEdit.
Copyright

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPQOSE. See the GNU General Public License for more details.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

GTKWave, wave viewer

« Installing GTKWave

=5 E=R <3
°@|. http://gtkwave.sourceforge.net/ o~ ” B GTKkwave X ‘ A RE

Welcome to GTKWave ~

GTKWave 15 a fully featured GTK+ based wave viewer for Unix, Win32, and Mac OSX which reads LXT, LXT2, VZT, FST, and GHW files
as well as standard Verilog VCIVEVCD files and allows their viewing. You can grab version 3.3.62 here. Documentation in pdf format can be
found here.

For svn access to the experimental, pre-release sourcetree on Sourceforge:
svn checkout svn:/svn code sfnet/p/stkwave/code/ gtkwave-code

The Win32 version 1s available here however if you are running Cygwin, running under that is recommended instead.
A Mac port can be found both here and here. A ready to use Quartz (not X11) App bundle for x86 64 can be found here.
Ports to other platforms which GTK supports should be trivial

Font

An experienced professional shown vielating most kmewn rules of electrical safery with GTKWave. Please do not attempt this ar home.

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

Sample circuit 1

* 4-bit counter
 synchronous reset

* negative-logic reset, initialize or reset the value of register cnt to

zero if RST_X is low

module counter

CLK

RST_X

1
—>

cnt
d [3:0]

}

cnt

[

=)

49‘

I CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH

\

28

Sample Verilog HDL Code

Signals Wawves

Time 188 ns
CLE=0
RST _X=1

cnt[3:08] =0

module counter

CLK

_—
RST_X
—_— 1
—
+

4 4

N =T ; cnt

i [3:0] Y

counter.v

688 ns

280 ns 388 ns 488 ns 500 ns

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

module top();
reg CLK, RST_X;
wire [3:0] w_cnt;

initial begin CLK = 1; forever #50 CLK = ~CLK; end
initial begin RST X = @; #2406 RST X = 1; end
initial #800 $finish();
initial begin
$dumpfile("wave.vcd");
$dumpvars (0, cntl);
end
always @(posedge CLK) $write("cntl: %d %x¥n", RST_X, w_cnt);

counter cntl(CLK, RST_X, w_cnt);
endmodule

/**/

module counter(CLK, RST X, cnt);
input wire CLK, RST_X;
output reg [3:0] cnt;

always @(posedge CLK) begin
if(!RST_X) cnt <= #5 0;
else cnt <= #5 cnt + 1;
end
endmodule

29

