
CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 1

Advanced Computer Architecture

1. Design and Analysis of Computer Systems

Ver. 2018-11-28aFiscal Year 2018

Course number: CSC.T433
School of Computing,
Graduate major in Computer Science

www.arch.cs.titech.ac.jp/lecture/ACA/
Room No.W936
Mon 13:20-14:50, Thr 13:20-14:50

Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 2

Syllabus (1/3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 3

Syllabus (2/3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 4

Processor fabrication: ingot and wafer

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 5

Processor fabrication: wafer and die

Intel, Industry-Leading Transistor Performance Demonstrated on Intel’s 90-nanometer Logic Process

Die

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 6

Processor fabrication: die and packaging

Die

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 7

The birth of microprocessors

Name Year # of transistors
Intel 4004 1971 2,250

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 8

Moore’s Law

• Moore's law is the observation that the number of transistors in
a dense integrated circuit doubles about every two years. The
observation is named after Gordon Moore, the co-founder of
Fairchild Semiconductor and Intel, whose 1965 paper described
a doubling every year in the number of components per
integrated circuit, and projected this rate of growth would
continue for at least another decade. In 1975, looking forward to
the next decade, he revised the forecast to doubling every two
years. The period is often quoted as 18 months because of a
prediction by Intel executive David House (being a combination
of the effect of more transistors and the transistors being
faster).

WIKIPEDIA

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 9

Moore’s Law

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 10

Moore’s Law

10

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 11

Growth in clock rate of microprocessors

From CAQA 5th edition

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 12

Clock rate is mainly determined by

• Switching speed of gates (transistors)
• The number of levels of gates

• The maximum number of gates cascaded in series in any
combinational logics.

• In this example, the number of levels of gates is 3.
• Wiring delay and fanout

12

Register
Register

AND gate

OR gate
AND gate

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 13
From CAQA 5th edition

Growth in processor performance

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 14

Which is faster?

• Time to run the task (ExTime)
– Execution time, response time, latency

• Tasks per day, hour, week, sec, ns …
(Performance)

– Throughput, bandwidth

Boeing 737

Nozomi

Max
Speed

800km/h
(503km/h)

270km/h
(205km/h)

Time &
Cost

1:20
32,000yen

4:00
18,000yen

Passengers

170

1,300

Throughput
(Speed x P)

85,510
(503 x 170)

266,500
(205 x 1,300)

Based on the lecture slide of David E Culler

From Tokyo to Hiroshima

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 15

Defining (Speed) Performance

• Normally interested in reducing
• Response time (execution time) – the time between the start and

the completion of a task or a program
• Important to individual users

• Thus, to maximize performance, need to minimize execution time

 Throughput – the total amount of work done in a given time
 Important to data center managers

 Decreasing response time almost always improves throughput

performanceX = 1 / execution_timeX

If X is n times faster than Y, then

performanceX execution_timeY -------------------- = --------------------- = n
performanceY execution_timeX

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 16

Performance Factors

• Want to distinguish elapsed time and the time spent on our task
• CPU execution time (CPU time) : time the CPU spends working on a task

• Does not include time waiting for I/O or running other programs

CPU execution time # CPU clock cycles
for a program for a program

= x clock cycle time

CPU execution time # CPU clock cycles for a program
for a program clock rate

= ---

 Can improve performance by reducing either the length of the clock cycle
or the number of clock cycles required for a program

or

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 17

Performance Factors

• Performance = f x IPC
• f: frequency (clock rate)
• IPC: retired instructions per cycle

CPU execution time # CPU clock cycles for a program
for a program clock rate

= ---

int flag = 1;

int foo(){
while(flag);

}

Performance = clock rate x 1 / # CPU clock cycles for a program

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 18

Syllabus (3/3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 19

From multi-core era to many-core era

Platform 2015: Intel® Processor and Platform Evolution for the Next Decade, 2005

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 20

Pollack’s Rule

• Pollack's Rule states that microprocessor "performance
increase due to microarchitecture advances is roughly
proportional to the square root of the increase in
complexity". Complexity in this context means processor
logic, i.e. its area.

WIKIPEDIA

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 21

From multi-core era to many-core era

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction, MICRO-36

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 22

Intel Sandy Bridge, January 2011

• 4 to 8 core

22

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 23

Intel Skylake-X, Core i9-7980XE, 2017

• 18 core

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 24

Syllabus (3/3)

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 25

Homework 1

1. Install Icarus Verilog
2. Install GTKWave
3. Simulate the behavior of a 4-bit counter (sample circuit 1) using

Icarus Verilog, and confirm the waveforms using GTKWave.
4. Modify the circuit and HDL code for another typical circuit

(like a decoder, LFSR and ALU), then simulate and confirm the
waveforms.

5. Submit a report printed on A4 paper at the beginning of the
next lecture.
• The report should include a block diagram, a source code in Verilog

HDL, and obtained waveforms of your circuit.

25

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 26

Icarus Verilog for Windows

• Installing Verilog HDL Simulation Environment （Windows）

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 27

GTKWave, wave viewer

• Installing GTKWave

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 28

Sample circuit 1

• 4-bit counter
• synchronous reset
• negative-logic reset, initialize or reset the value of register cnt to

zero if RST_X is low

+

1

4

CLK

RST_X

cnt4

module counter

cnt
[3:0]

CSC.T433 Advanced Computer Architecture, Department of Computer Science, TOKYO TECH 29

Sample Verilog HDL Code

8 module top();
9 reg CLK, RST_X;

10 wire [3:0] w_cnt;
11
12 initial begin CLK = 1; forever #50 CLK = ~CLK; end
13 initial begin RST_X = 0; #240 RST_X = 1; end
14 initial #800 $finish();
15 initial begin
16 $dumpfile("wave.vcd");
17 $dumpvars(0, cnt1);
18 end
19 always @(posedge CLK) $write("cnt1: %d %x¥n", RST_X, w_cnt);
20
21 counter cnt1(CLK, RST_X, w_cnt);
22 endmodule
23
24 /**/
25 module counter(CLK, RST_X, cnt);
26 input wire CLK, RST_X;
27 output reg [3:0] cnt;
28
29 always @(posedge CLK) begin
30 if(!RST_X) cnt <= #5 0;
31 else cnt <= #5 cnt + 1;
32 end
33 endmodulecounter.v

