Mathematical Preliminary (2)
Infinite-Horizon Dynamic Optimization in

Continuous Time

|[EE.B402. Advanced Macroeconomics

Ryoji Ohdoi
Department of Industrial Engineering and Economics,
Tokyo Institute of Technology

1/23



Plan

» Infinite-horizon utility maximization problem

> Two key conditions:
Euler equation and the transversality condition (TVC)
» Sufficiency of Euler eq. and TVC for utility maximization

» How to derive the utility-maximizing conditions
» Hamiltonian approach (based on Maximum Principle)
» Economic implications of dynamic utility maximization

> Intertemporal budget constraint
» Consumption function with utility maximization
> Role of expectations about the “future” in the “current” decision

making

(*) The detail of derivations for key equations is given in the class.
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Notation

Notation:

» Time is continuous, indexed by ¢ € [0, c0).

» As for the other variables, they have the same meanings as the slides
on Jun. 19, but they are now continuous functions of time.

» Hereafter, let {z(¢)} denote the time path of a variable z(t).

Budget constraint at time ¢:

dt
=r(t)w(t) +w(t) — c(t). (1)

A dot over a variable indicates its time derivative (e.g., #(t) = dx(t)/dt).
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Time Discounting in Continuous Time

Let D(t) € (0,1) denote the discount factor from time 0 to ¢, and
assume that

D) = Dt = A0) x 1o

> p(t) > 0: the discount rate from time ¢ — At to t.

Taking the limit of At — 0 yields
D(t) = —p(t)D(t) = D(t) = exp (—/0 p(s)ds) .

» If p(t) is constant over time (i.e., p(t) = p), the discount factor is
simply given by D(t) = e~ L.
Note

”

Hereafter we use “exp(—pt)" and “e~”'" interchangeably.
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Objective Function

Suppose that a household has the constant discount rate p > 0.

Objective function:
U:/ e Plu(e(t))dt,
0

where u(+) is called the instantaneous utility function.

Assumption 1

1. w is differentiable (of necessary times);
2. w is strictly increasing: u'(c) > 0;

3. w is strictly concave: u”(c) < 0.

Assumption 2

The function w satisfies the Inada condition: lim._,o+ u'(c) = oc.
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Continuous-Time Utility Maximization Problem

The canonical utility maximization problem in continuous time is

formulated as

U= /000 e Plu(c(t))dt

(e a0}
st a(t) = r@w(t) + w(t) — c(t) Vi € [0, 00), (1)
tlggo a(t) exp (—/0 r(s)ds) > 0. (NPG)

A pair of paths {c(t), a(t)} is called feasible or admissible if it satisfies
(1) and (NPG).
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Sufficient Conditions of UMP

Theorem 1 (Sufficiency)

Suppose that u(c) satisfies Assumption 1. Then, given a(0) and
{r(t),w(t)}, the pair of time paths {c(t),a(t)} is the utility-maximizing
plan if it satisfies (1) and

J( ( )) ( ) T(t) - P (2)
lim; o0 e Ptu’(c(t))a(t) = 0, (3)
where o(c) = — Cz,/ I(S) > 0 is the degree of relative risk aversion.

Proof.  Appendix.

Note:
(2) is the continuous-time counterpart of the Euler equation, and
(3) is that of the transversality condition (TVC).
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How to derive the conditions
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Hamiltonian Approach

1. Construct the Lagrangian:

L= /OOO e {ulc(t)) + A®) [r(t)a(t) +w(t) — c(t) — a(t)]} dt,

where A(t) is the Lagrangian multiplier at time ¢.

2. Arrange:
L= / =t {u(c) + A [ra+ w — o]} dt — / e~PIA(t)alt)dt
0 0

= /m e P H(a(t), c(t), \(t), t)dt — /OO e PEN(t)a(t)dt,
0 0

H{a(t), c(t), A(t),t) = u(e(t)) + A@)[r(t)a(t) + w(t) — c(t)],

is called the current-value Hamiltonian.



Hamiltonian Approach

3. Using the method of integration by parts, derive
/0 T et dt = —A(0)a(0) + Jim e~ A(t)a()
_ /0 e rta(t) [A(t) — o) a,
which results in

L= /0 R {H(a(t), c(t), A1), 1) + a(t) [A(t) - pA(t)} } dt

+ A(0)a(0) — Lim e P \(t)a(t).

t—o0
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Hamiltonian Approach

4. Then, derive the first-order (necessary) conditions wrt ¢(t) and a(t):

oH ()
de(t)
alt) ‘2%'))+A<t>—px<t>=o<:>x<t>=<p—r<t>>x<t>. (5)

c(t) : = 0e u(c(t)) — A(t) =0, (4)

5. Take the log of both sides in (4) and differentiate the results wrt

time:
cu’(e) ¢ A
w(c) ¢ N
6. Finally, by substituting this equation into (5), we obtain the Euler
equation:
¢(t)
t =r()—p.
o(elt) 5y =70~
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Relationship btw NPG and TVC

Using (5), we have

A =20 (- [ (r(s) pds). (6)

Since A(t) = u/(c(t)) from (4), the TVC (3) is rewritten as

Jim () exp (- /0 tr(s)ds) 0.

I

» NPG is the constraint, which prohibits the household to leave a debt
in a present value sense.

» TVC is the condition for maximization, which ensures the binding of
the NPG.
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Economic implications of dynamic utility maximization
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Implications

In a two-period utility maximization problem, {cg, c;} is obtained from

» Intertemporal budget constraint:

w1 C1
1 — = 7
( +r0)a0+w0+1+7"1 CO—’_l—i-T‘l7 ()
and
» Euler equation (in discrete time):
u/(C()) :5(14'7"1)’11/(01), (8)

where r(t) and w(t) are taken as given.

To obtain the time path of consumption in the continuous-time model,
we at first obtain the intertemporal budget constraint.
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Intertemporal Budget Constraint

In the continuous-time problem, the household's intertemporal budget

constraint from time ¢ is given by

alt) + /too w(v) exp (— /t r(s)ds) dv = /too c(v) exp (— /tvr(s)ds) dv.

Lifetime income from time ¢ Lifetime consumption from time ¢

(9)

The lifetime income at time ¢ in turn consists of

1. a(t): assets at time t;

2. ftoo w(v)e” J& ()45 qy: the present value of wage income.
— This is also called the human wealth, hereafter denoted by h(t):

h(t)z/ w(v)e 7 s gy,
¢
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Specification of

In macroeconomics, the instantaneous utility u is often specified as the
following:

-0 if e Ry \ {1},

log c if 0 =1.
The above specification is called the CRRA utility function.
(*) CRRA= Constant Relative Risk Aversion

Under the CRRA specification, u'(¢) = ¢~? and u”(c) = —0c= 971,

Then, Euler equation is given by

ét/ Ty —p

(&% 0
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Consumption Function

From this Euler equation, we obtain

o= cltye (5 [0 pas). (10)

Substituting (10) into the intertermporal budget constraint (9), we can
obtain the consumption level at time ¢ as follows:

c(t) = n(t) [a(t) + h(1)], (11)

where 7)(t) is the propensity to consume, defined by

00 —1
w=| [~ ew-RODa|
R(v) = ;/t”[(l —0)r(s) — plds.
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Implication in a Simplified Case
When 6 =1 (i.e., u(c) =loge), n(t) = p, and then (11) becomes

c(t) = plat) + h(1)).

Quiz
[Show it. ]

1

Implication:

A household consumes a constant fraction of his/her “lifetime income,”
which includes the wage income at the future dates.

Such a consumption behavior is more realistic that in the Solow model,
where he/she decides the level of current consumption based only on
his/her “current income.”
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The Role of Expectation

Further simplify the model so that
1. r(t) is constant at > 0,

2. the household expects the wage will grow at a constant rate of
g >0,

where r > g is assumed.

l

In this case, the consumption function (11) is further simplified to
w(t)
t) = )+ ——=). 12
o(t) = p (att) + 20 (12)

We easily obtain the implication that if he/she expects the wage income
grows faster (i.e., he expects g 1), then, he/she immediately increases

consumption at this moment.
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Appendix
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Proof of Theorem 1

> Let {c*(¢),a*(t)} denote the pair of time paths satisfying (1)—(3).
Hereafter “(t)" is omitted unless to do so would cause confusions.

» Since u is strictly concave, we have the following inequality:
u(c®) > u(e) +u'(c)(c" — o),

where ¢ can be arbitrarily chosen except c*.

» Then, we have
/ e Plu(c*)dt — / e Plu(e)dt > D*,
0 0

where o
D* = / e P’ (c*)(c* — c)dt.
0

Therefore, we can show this theorem by showing D* > 0.
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Proof of Theorem 1
» Since both of {¢*(¢)} and {c(t)} are feasible, D* is rewritten as
D" = / =Pl (¢*) [r(a” — a) — (a" — )] dt.
0

» Using the method of integration by parts,

o0

/ooo et/ (¢ (#)alt)dt = [e™""u' (" ()a(t)] 2,

- " a)e? (pu () + ()" d,

o0

et e e = e e 07,
- /Ooo a*(t)e Pt (—pu'(c*) +u" (c*)ér) dt.

» Substituting these results into D* yields

22/23



Proof of Theorem 1

u/I(C*)

D* = /0 e P/ (%) [r —p+ ) ¢ | (a* —a)dt

— lim e "%/ (c*(t))a*(t) + lim e "™/ (c*(t))a(t)

t—o00 t—o0

= lim e ""u/(c*(t))al(t).

t—o00

> Finally, let A(¢) = u/(c*(t)). Then, the Euler equation means
A(t)/A(t) = p — r(t), which in turn implies

A(t) = A(0) exp ( /Ot r(s)ds) .

» Then, we obtain

t—o0 t—o0

D* = lim e~/ (c*(t))a(t) = u'(¢*(0)) lim [a(t) exp < /0 tr(s)ds)] ,

which is nonnegative from the NPG.
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