# Mathematical Preliminary (2) <br> Infinite-Horizon Dynamic Optimization in <br> Continuous Time 

IEE.B402. Advanced Macroeconomics

Ryoji Ohdoi<br>Department of Industrial Engineering and Economics,<br>Tokyo Institute of Technology

- Infinite-horizon utility maximization problem
- Two key conditions:

Euler equation and the transversality condition (TVC)

- Sufficiency of Euler eq. and TVC for utility maximization
- How to derive the utility-maximizing conditions
- Hamiltonian approach (based on Maximum Principle)
- Economic implications of dynamic utility maximization
- Intertemporal budget constraint
- Consumption function with utility maximization
- Role of expectations about the "future" in the "current" decision making
$(*)$ The detail of derivations for key equations is given in the class.


## Notation

Notation:

- Time is continuous, indexed by $t \in[0, \infty)$.
- As for the other variables, they have the same meanings as the slides on Jun. 19, but they are now continuous functions of time.
- Hereafter, let $\{x(t)\}$ denote the time path of a variable $x(t)$.

Budget constraint at time $t$ :

$$
\begin{align*}
\dot{a}(t) & \equiv \frac{d a(t)}{d t} \\
& =r(t) w(t)+w(t)-c(t) \tag{1}
\end{align*}
$$

A dot over a variable indicates its time derivative (e.g., $\dot{x}(t)=d x(t) / d t)$.

## Time Discounting in Continuous Time

Let $\mathcal{D}(t) \in(0,1)$ denote the discount factor from time 0 to $t$, and assume that

$$
\mathcal{D}(t)=\mathcal{D}(t-\Delta t) \times \frac{1}{1+\rho(t) \Delta t},
$$

- $\rho(t)>0$ : the discount rate from time $t-\Delta t$ to $t$.

Taking the limit of $\Delta t \rightarrow 0$ yields

$$
\dot{\mathcal{D}}(t)=-\rho(t) \mathcal{D}(t) \Rightarrow \mathcal{D}(t)=\exp \left(-\int_{0}^{t} \rho(s) d s\right)
$$

- If $\rho(t)$ is constant over time (i.e., $\rho(t)=\rho$ ), the discount factor is simply given by $\mathcal{D}(t)=e^{-\rho t}$.

Note
Hereafter we use " $\exp (-\rho t)$ " and " $e^{-\rho t "}$ interchangeably.

## Objective Function

Suppose that a household has the constant discount rate $\rho>0$. Objective function:

$$
U=\int_{0}^{\infty} e^{-\rho t} u(c(t)) d t
$$

where $u(\cdot)$ is called the instantaneous utility function.

Assumption 1

1. $u$ is differentiable (of necessary times);
2. $u$ is strictly increasing: $u^{\prime}(c)>0$;
3. $u$ is strictly concave: $u^{\prime \prime}(c)<0$.

Assumption 2
The function $u$ satisfies the Inada condition: $\lim _{c \rightarrow 0^{+}} u^{\prime}(c)=\infty$.

## Continuous-Time Utility Maximization Problem

The canonical utility maximization problem in continuous time is formulated as

$$
\begin{align*}
\max _{\{c(t), a(t)\}} & U=\int_{0}^{\infty} e^{-\rho t} u(c(t)) d t \\
\text { s.t. } & \dot{a}(t)=r(t) w(t)+w(t)-c(t) \forall t \in[0, \infty)  \tag{1}\\
& \lim _{t \rightarrow \infty} a(t) \exp \left(-\int_{0}^{t} r(s) d s\right) \geq 0 \tag{NPG}
\end{align*}
$$

A pair of paths $\{c(t), a(t)\}$ is called feasible or admissible if it satisfies
(1) and (NPG).

## Sufficient Conditions of UMP

Theorem 1 (Sufficiency)
Suppose that $u(c)$ satisfies Assumption 1. Then, given $a(0)$ and $\{r(t), w(t)\}$, the pair of time paths $\{c(t), a(t)\}$ is the utility-maximizing plan if it satisfies (1) and

$$
\begin{gather*}
\sigma(c(t)) \frac{\dot{c}(t)}{c(t)}=r(t)-\rho  \tag{2}\\
\lim _{t \rightarrow \infty} e^{-\rho t} u^{\prime}(c(t)) a(t)=0 \tag{3}
\end{gather*}
$$

where $\sigma(c)=-\frac{c u^{\prime \prime}(c)}{u^{\prime}(c)}>0$ is the degree of relative risk aversion.

Proof. Appendix.

Note:
(2) is the continuous-time counterpart of the Euler equation, and
(3) is that of the transversality condition (TVC).

How to derive the conditions

## Hamiltonian Approach

1. Construct the Lagrangian:

$$
L=\int_{0}^{\infty} e^{-\rho t}\{u(c(t))+\lambda(t)[r(t) a(t)+w(t)-c(t)-\dot{a}(t)]\} d t
$$

where $\lambda(t)$ is the Lagrangian multiplier at time $t$.
2. Arrange:

$$
\begin{aligned}
L & =\int_{0}^{\infty} e^{-\rho t}\{u(c)+\lambda[r a+w-c]\} d t-\int_{0}^{\infty} e^{-\rho t} \lambda(t) \dot{a}(t) d t \\
& =\int_{0}^{\infty} e^{-\rho t} H(a(t), c(t), \lambda(t), t) d t-\int_{0}^{\infty} e^{-\rho t} \lambda(t) \dot{a}(t) d t
\end{aligned}
$$

where

$$
H(a(t), c(t), \lambda(t), t)=u(c(t))+\lambda(t)[r(t) a(t)+w(t)-c(t)],
$$

is called the current-value Hamiltonian.

## Hamiltonian Approach

3. Using the method of integration by parts, derive

$$
\begin{aligned}
\int_{0}^{\infty} e^{-\rho t} \lambda(t) \dot{a}(t) d t= & -\lambda(0) a(0)+\lim _{t \rightarrow \infty} e^{-\rho t} \lambda(t) a(t) \\
& -\int_{0}^{\infty} e^{-\rho t} a(t)[\dot{\lambda}(t)-\rho \lambda(t)] d t
\end{aligned}
$$

which results in

$$
\begin{aligned}
L= & \int_{0}^{\infty} e^{-\rho t}\{H(a(t), c(t), \lambda(t), t)+a(t)[\dot{\lambda}(t)-\rho \lambda(t)]\} d t \\
& +\lambda(0) a(0)-\lim _{t \rightarrow \infty} e^{-\rho t} \lambda(t) a(t) .
\end{aligned}
$$

## Hamiltonian Approach

4. Then, derive the first-order (necessary) conditions wrt $c(t)$ and $a(t)$ :

$$
\begin{array}{ll}
c(t): & \frac{\partial H(\cdot)}{\partial c(t)}=0 \Leftrightarrow u^{\prime}(c(t))-\lambda(t)=0, \\
a(t): & \frac{\partial H(\cdot)}{\partial a(t)}+\dot{\lambda}(t)-\rho \lambda(t)=0 \Leftrightarrow \dot{\lambda}(t)=(\rho-r(t)) \lambda(t) . \tag{5}
\end{array}
$$

5. Take the log of both sides in (4) and differentiate the results wrt time:

$$
\frac{c u^{\prime \prime}(c)}{u^{\prime}(c)} \frac{\dot{c}}{c}=\frac{\dot{\lambda}}{\lambda}
$$

6. Finally, by substituting this equation into (5), we obtain the Euler equation:

$$
\sigma(c(t)) \frac{\dot{c}(t)}{c(t)}=r(t)-\rho
$$

## Relationship btw NPG and TVC

Using (5), we have

$$
\begin{equation*}
\lambda(t)=\lambda(0) \exp \left(-\int_{0}^{t}(r(s)-\rho) d s\right) . \tag{6}
\end{equation*}
$$

Since $\lambda(t)=u^{\prime}(c(t))$ from (4), the TVC (3) is rewritten as

$$
\lim _{t \rightarrow \infty} a(t) \exp \left(-\int_{0}^{t} r(s) d s\right)=0
$$

$\Downarrow$

- NPG is the constraint, which prohibits the household to leave a debt in a present value sense.
- TVC is the condition for maximization, which ensures the binding of the NPG.

Economic implications of dynamic utility maximization

## Implications

In a two-period utility maximization problem, $\left\{c_{0}, c_{1}\right\}$ is obtained from

- Intertemporal budget constraint:

$$
\begin{equation*}
\left(1+r_{0}\right) a_{0}+w_{0}+\frac{w_{1}}{1+r_{1}}=c_{0}+\frac{c_{1}}{1+r_{1}} \tag{7}
\end{equation*}
$$

and

- Euler equation (in discrete time):

$$
\begin{equation*}
u^{\prime}\left(c_{0}\right)=\beta\left(1+r_{1}\right) u^{\prime}\left(c_{1}\right), \tag{8}
\end{equation*}
$$

where $r(t)$ and $w(t)$ are taken as given.

To obtain the time path of consumption in the continuous-time model, we at first obtain the intertemporal budget constraint.

## Intertemporal Budget Constraint

In the continuous-time problem, the household's intertemporal budget constraint from time $t$ is given by

$$
\begin{equation*}
\underbrace{a(t)+\int_{t}^{\infty} w(v) \exp \left(-\int_{t}^{v} r(s) d s\right) d v}_{\text {Lifetime income from time } t}=\underbrace{\int_{t}^{\infty} c(v) \exp \left(-\int_{t}^{v} r(s) d s\right) d v}_{\text {Lifetime consumption from time } t} \tag{9}
\end{equation*}
$$

The lifetime income at time $t$ in turn consists of

1. $a(t)$ : assets at time $t$;
2. $\int_{t}^{\infty} w(v) e^{-\int_{t}^{v} r(s) d s} d v$ : the present value of wage income.
$\rightarrow$ This is also called the human wealth, hereafter denoted by $h(t)$ :

$$
h(t) \equiv \int_{t}^{\infty} w(v) e^{-\int_{t}^{v} r(s) d s} d v
$$

## Specification of $u$

In macroeconomics, the instantaneous utility $u$ is often specified as the following:

$$
u(c)= \begin{cases}\frac{c^{1-\theta}-1}{1-\theta} & \text { if } \theta \in \mathbb{R}_{++} \backslash\{1\} \\ \log c & \text { if } \theta=1\end{cases}
$$

The above specification is called the CRRA utility function.
(*) CRRA = Constant Relative Risk Aversion

Under the CRRA specification, $u^{\prime}(c)=c^{-\theta}$ and $u^{\prime \prime}(c)=-\theta c^{-\theta-1}$.

Then, Euler equation is given by

$$
\frac{\dot{c}_{t^{\prime}}}{c_{t^{\prime}}}=\frac{r_{t^{\prime}}-\rho}{\theta}
$$

## Consumption Function

From this Euler equation, we obtain

$$
\begin{equation*}
c_{v}=c(t) \exp \left(\frac{1}{\theta} \int_{t}^{v}(r(s)-\rho) d s\right) . \tag{10}
\end{equation*}
$$

Substituting (10) into the intertermporal budget constraint (9), we can obtain the consumption level at time $t$ as follows:

$$
\begin{equation*}
c(t)=\eta(t)[a(t)+h(t)], \tag{11}
\end{equation*}
$$

where $\eta(t)$ is the propensity to consume, defined by

$$
\begin{aligned}
\eta(t) & \equiv\left[\int_{t}^{\infty} \exp (-\mathcal{R}(v)) d v\right]^{-1}, \\
\mathcal{R}(v) & \equiv \frac{1}{\theta} \int_{t}^{v}[(1-\theta) r(s)-\rho] d s
\end{aligned}
$$

## Implication in a Simplified Case

When $\theta=1$ (i.e., $u(c)=\log c$ ), $\eta(t)=\rho$, and then (11) becomes

$$
c(t)=\rho(a(t)+h(t)) .
$$

Quiz
Show it.
$\downarrow$
Implication:
A household consumes a constant fraction of his/her "lifetime income," which includes the wage income at the future dates.

Such a consumption behavior is more realistic that in the Solow model, where he/she decides the level of current consumption based only on his/her "current income."

## The Role of Expectation

Further simplify the model so that

1. $r(t)$ is constant at $r>0$,
2. the household expects the wage will grow at a constant rate of

$$
g>0
$$

where $r>g$ is assumed.
$\downarrow$
In this case, the consumption function (11) is further simplified to

$$
\begin{equation*}
c(t)=\rho\left(a(t)+\frac{w(t)}{r-g}\right) \tag{12}
\end{equation*}
$$

We easily obtain the implication that if he/she expects the wage income grows faster (i.e., he expects $g \uparrow$ ), then, he/she immediately increases consumption at this moment.

Appendix

## Proof of Theorem 1

- Let $\left\{c^{*}(t), a^{*}(t)\right\}$ denote the pair of time paths satisfying (1)-(3). Hereafter " $(t)$ " is omitted unless to do so would cause confusions.
- Since $u$ is strictly concave, we have the following inequality:

$$
u\left(c^{*}\right)>u(c)+u^{\prime}\left(c^{*}\right)\left(c^{*}-c\right)
$$

where $c$ can be arbitrarily chosen except $c^{*}$.

- Then, we have

$$
\int_{0}^{\infty} e^{-\rho t} u\left(c^{*}\right) d t-\int_{0}^{\infty} e^{-\rho t} u(c) d t>D^{*}
$$

where

$$
D^{*} \equiv \int_{0}^{\infty} e^{-\rho t} u^{\prime}\left(c^{*}\right)\left(c^{*}-c\right) d t
$$

Therefore, we can show this theorem by showing $D^{*} \geq 0$.

## Proof of Theorem 1

- Since both of $\left\{c^{*}(t)\right\}$ and $\{c(t)\}$ are feasible, $D^{*}$ is rewritten as

$$
D^{*}=\int_{0}^{\infty} e^{-\rho t} u^{\prime}\left(c^{*}\right)\left[r\left(a^{*}-a\right)-\left(\dot{a}^{*}-\dot{a}\right)\right] d t .
$$

- Using the method of integration by parts,

$$
\begin{aligned}
\int_{0}^{\infty} e^{-\rho t} u^{\prime}\left(c^{*}(t)\right) \dot{a}(t) d t= & {\left[e^{-\rho t} u^{\prime}\left(c^{*}(t)\right) a(t)\right]_{t=0}^{\infty} } \\
& -\int_{0}^{\infty} a(t) e^{-\rho t}\left(-\rho u^{\prime}\left(c^{*}\right)+u^{\prime \prime}\left(c^{*}\right) \dot{c}^{*}\right) d t \\
\int_{0}^{\infty} e^{-\rho t} u^{\prime}\left(c^{*}(t)\right) \dot{a}^{*}(t) d t= & {\left[e^{-\rho t} u^{\prime}\left(c^{*}(t)\right) a^{*}(t)\right]_{t=0}^{\infty} } \\
& -\int_{0}^{\infty} a^{*}(t) e^{-\rho t}\left(-\rho u^{\prime}\left(c^{*}\right)+u^{\prime \prime}\left(c^{*}\right) \dot{c}^{*}\right) d t .
\end{aligned}
$$

- Substituting these results into $D^{*}$ yields


## Proof of Theorem 1

$$
\begin{aligned}
D^{*}= & \int_{0}^{\infty} e^{-\rho t} u^{\prime}\left(c^{*}\right)\left[r-\rho+\frac{u^{\prime \prime}\left(c^{*}\right)}{u^{\prime}\left(c^{*}\right)} \dot{c}^{*}\right]\left(a^{*}-a\right) d t \\
& -\lim _{t \rightarrow \infty} e^{-\rho t} u^{\prime}\left(c^{*}(t)\right) a^{*}(t)+\lim _{t \rightarrow \infty} e^{-\rho t} u^{\prime}\left(c^{*}(t)\right) a(t) \\
= & \lim _{t \rightarrow \infty} e^{-\rho t} u^{\prime}\left(c^{*}(t)\right) a(t)
\end{aligned}
$$

- Finally, let $\lambda(t)=u^{\prime}\left(c^{*}(t)\right)$. Then, the Euler equation means $\dot{\lambda}(t) / \lambda(t)=\rho-r(t)$, which in turn implies

$$
\lambda(t)=\lambda(0) \exp \left(-\int_{0}^{t} r(s) d s\right)
$$

- Then, we obtain

$$
D^{*}=\lim _{t \rightarrow \infty} e^{-\rho t} u^{\prime}\left(c^{*}(t)\right) a(t)=u^{\prime}\left(c^{*}(0)\right) \lim _{t \rightarrow \infty}\left[a(t) \exp \left(-\int_{0}^{t} r(s) d s\right)\right]
$$

which is nonnegative from the NPG.

