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Plan

▶ Infinite-horizon utility maximization problem

▶ Two key conditions:

Euler equation and the transversality condition (TVC)

▶ Sufficiency of Euler eq. and TVC for utility maximization

▶ How to derive the utility-maximizing conditions

▶ Hamiltonian approach (based on Maximum Principle)

▶ Economic implications of dynamic utility maximization

▶ Intertemporal budget constraint

▶ Consumption function with utility maximization

▶ Role of expectations about the “future” in the “current” decision

making

(∗) The detail of derivations for key equations is given in the class.
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Notation

Notation:

▶ Time is continuous, indexed by t ∈ [0,∞).

▶ As for the other variables, they have the same meanings as the slides

on Jun. 19, but they are now continuous functions of time.

▶ Hereafter, let {x(t)} denote the time path of a variable x(t).

Budget constraint at time t:

ȧ(t) ≡ da(t)

dt

= r(t)w(t) + w(t)− c(t). (1)

A dot over a variable indicates its time derivative (e.g., ẋ(t) = dx(t)/dt).
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Time Discounting in Continuous Time

Let D(t) ∈ (0, 1) denote the discount factor from time 0 to t, and

assume that

D(t) = D(t−∆t)× 1

1 + ρ(t)∆t
,

▶ ρ(t) > 0: the discount rate from time t−∆t to t.

Taking the limit of ∆t → 0 yields

Ḋ(t) = −ρ(t)D(t) ⇒ D(t) = exp

(
−
∫ t

0

ρ(s)ds

)
.

▶ If ρ(t) is constant over time (i.e., ρ(t) = ρ), the discount factor is

simply given by D(t) = e−ρt.

Note

Hereafter we use “exp(−ρt)” and “e−ρt” interchangeably.
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Objective Function

Suppose that a household has the constant discount rate ρ > 0.

Objective function:

U =

∫ ∞

0

e−ρtu(c(t))dt,

where u(·) is called the instantaneous utility function.

Assumption 1

1. u is differentiable (of necessary times);

2. u is strictly increasing: u′(c) > 0;

3. u is strictly concave: u′′(c) < 0.

Assumption 2

The function u satisfies the Inada condition: limc→0+ u′(c) = ∞.
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Continuous-Time Utility Maximization Problem

The canonical utility maximization problem in continuous time is

formulated as

max
{c(t),a(t)}

U =

∫ ∞

0

e−ρtu(c(t))dt

s.t. ȧ(t) = r(t)w(t) + w(t)− c(t) ∀t ∈ [0,∞), (1)

lim
t→∞

a(t) exp

(
−
∫ t

0

r(s)ds

)
≥ 0. (NPG)

A pair of paths {c(t), a(t)} is called feasible or admissible if it satisfies

(1) and (NPG).
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Sufficient Conditions of UMP

Theorem 1 (Sufficiency)

Suppose that u(c) satisfies Assumption 1. Then, given a(0) and

{r(t), w(t)}, the pair of time paths {c(t), a(t)} is the utility-maximizing

plan if it satisfies (1) and

σ(c(t))
ċ(t)

c(t)
= r(t)− ρ, (2)

limt→∞ e−ρtu′(c(t))a(t) = 0, (3)

where σ(c) = − cu′′(c)
u′(c) > 0 is the degree of relative risk aversion.

Proof. Appendix.

Note:

(2) is the continuous-time counterpart of the Euler equation, and

(3) is that of the transversality condition (TVC).
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How to derive the conditions
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Hamiltonian Approach

1. Construct the Lagrangian:

L =

∫ ∞

0

e−ρt {u(c(t)) + λ(t) [r(t)a(t) + w(t)− c(t)− ȧ(t)]} dt,

where λ(t) is the Lagrangian multiplier at time t.

2. Arrange:

L =

∫ ∞

0

e−ρt {u(c) + λ [ra+ w − c]} dt−
∫ ∞

0

e−ρtλ(t)ȧ(t)dt

=

∫ ∞

0

e−ρtH(a(t), c(t), λ(t), t)dt−
∫ ∞

0

e−ρtλ(t)ȧ(t)dt,

where

H(a(t), c(t), λ(t), t) = u(c(t)) + λ(t)[r(t)a(t) + w(t)− c(t)],

is called the current-value Hamiltonian.
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Hamiltonian Approach

3. Using the method of integration by parts, derive∫ ∞

0

e−ρtλ(t)ȧ(t)dt = −λ(0)a(0) + lim
t→∞

e−ρtλ(t)a(t)

−
∫ ∞

0

e−ρta(t)
[
λ̇(t)− ρλ(t)

]
dt,

which results in

L =

∫ ∞

0

e−ρt
{
H(a(t), c(t), λ(t), t) + a(t)

[
λ̇(t)− ρλ(t)

]}
dt

+ λ(0)a(0)− lim
t→∞

e−ρtλ(t)a(t).
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Hamiltonian Approach

4. Then, derive the first-order (necessary) conditions wrt c(t) and a(t):

c(t) :
∂H(·)
∂c(t)

= 0 ⇔ u′(c(t))− λ(t) = 0, (4)

a(t) :
∂H(·)
∂a(t)

+ λ̇(t)− ρλ(t) = 0 ⇔ λ̇(t) = (ρ− r(t))λ(t). (5)

5. Take the log of both sides in (4) and differentiate the results wrt

time:

cu′′(c)

u′(c)

ċ

c
=

λ̇

λ
.

6. Finally, by substituting this equation into (5), we obtain the Euler

equation:

σ(c(t))
ċ(t)

c(t)
= r(t)− ρ.
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Relationship btw NPG and TVC

Using (5), we have

λ(t) = λ(0) exp

(
−
∫ t

0

(r(s)− ρ)ds

)
. (6)

Since λ(t) = u′(c(t)) from (4), the TVC (3) is rewritten as

lim
t→∞

a(t) exp

(
−
∫ t

0

r(s)ds

)
= 0.

⇓

▶ NPG is the constraint, which prohibits the household to leave a debt

in a present value sense.

▶ TVC is the condition for maximization, which ensures the binding of

the NPG.
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Economic implications of dynamic utility maximization
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Implications

In a two-period utility maximization problem, {c0, c1} is obtained from

▶ Intertemporal budget constraint:

(1 + r0)a0 + w0 +
w1

1 + r1
= c0 +

c1
1 + r1

, (7)

and

▶ Euler equation (in discrete time):

u′(c0) = β(1 + r1)u
′(c1), (8)

where r(t) and w(t) are taken as given.

To obtain the time path of consumption in the continuous-time model,

we at first obtain the intertemporal budget constraint.
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Intertemporal Budget Constraint

In the continuous-time problem, the household’s intertemporal budget

constraint from time t is given by

a(t) +

∫ ∞

t

w(v) exp

(
−
∫ v

t

r(s)ds

)
dv︸ ︷︷ ︸

Lifetime income from time t

=

∫ ∞

t

c(v) exp

(
−
∫ v

t

r(s)ds

)
dv︸ ︷︷ ︸

Lifetime consumption from time t

.

(9)

The lifetime income at time t in turn consists of

1. a(t): assets at time t;

2.
∫∞
t

w(v)e−
∫ v
t

r(s)dsdv: the present value of wage income.

→ This is also called the human wealth, hereafter denoted by h(t):

h(t) ≡
∫ ∞

t

w(v)e−
∫ v
t

r(s)dsdv.
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Specification of u
In macroeconomics, the instantaneous utility u is often specified as the

following:

u(c) =


c1−θ − 1

1− θ
if θ ∈ R++ \ {1},

log c if θ = 1.

The above specification is called the CRRA utility function.

(∗) CRRA= Constant Relative Risk Aversion

Under the CRRA specification, u′(c) = c−θ and u′′(c) = −θc−θ−1.

Then, Euler equation is given by

ċt′

ct′
=

rt′ − ρ

θ
.
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Consumption Function

From this Euler equation, we obtain

cv = c(t) exp

(
1

θ

∫ v

t

(r(s)− ρ)ds

)
. (10)

Substituting (10) into the intertermporal budget constraint (9), we can

obtain the consumption level at time t as follows:

c(t) = η(t) [a(t) + h(t)] , (11)

where η(t) is the propensity to consume, defined by

η(t) ≡
[∫ ∞

t

exp (−R(v)) dv

]−1

,

R(v) ≡ 1

θ

∫ v

t

[(1− θ)r(s)− ρ]ds.
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Implication in a Simplified Case

When θ = 1 (i.e., u(c) = log c), η(t) = ρ, and then (11) becomes

c(t) = ρ(a(t) + h(t)).

Quiz� �
Show it.� �

↓
Implication:

A household consumes a constant fraction of his/her “lifetime income,”

which includes the wage income at the future dates.

Such a consumption behavior is more realistic that in the Solow model,

where he/she decides the level of current consumption based only on

his/her “current income.”
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The Role of Expectation

Further simplify the model so that

1. r(t) is constant at r > 0,

2. the household expects the wage will grow at a constant rate of

g > 0,

where r > g is assumed.

↓
In this case, the consumption function (11) is further simplified to

c(t) = ρ

(
a(t) +

w(t)

r − g

)
. (12)

We easily obtain the implication that if he/she expects the wage income

grows faster (i.e., he expects g ↑), then, he/she immediately increases

consumption at this moment.
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Appendix
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Proof of Theorem 1

▶ Let {c∗(t), a∗(t)} denote the pair of time paths satisfying (1)–(3).

Hereafter “(t)” is omitted unless to do so would cause confusions.

▶ Since u is strictly concave, we have the following inequality:

u(c∗) > u(c) + u′(c∗)(c∗ − c),

where c can be arbitrarily chosen except c∗.

▶ Then, we have∫ ∞

0

e−ρtu(c∗)dt−
∫ ∞

0

e−ρtu(c)dt > D∗,

where

D∗ ≡
∫ ∞

0

e−ρtu′(c∗)(c∗ − c)dt.

Therefore, we can show this theorem by showing D∗ ≥ 0.
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Proof of Theorem 1

▶ Since both of {c∗(t)} and {c(t)} are feasible, D∗ is rewritten as

D∗ =

∫ ∞

0

e−ρtu′(c∗) [r(a∗ − a)− (ȧ∗ − ȧ)] dt.

▶ Using the method of integration by parts,∫ ∞

0

e−ρtu′(c∗(t))ȧ(t)dt =
[
e−ρtu′(c∗(t))a(t)

]∞
t=0

−
∫ ∞

0

a(t)e−ρt (−ρu′(c∗) + u′′(c∗)ċ∗) dt,∫ ∞

0

e−ρtu′(c∗(t))ȧ∗(t)dt =
[
e−ρtu′(c∗(t))a∗(t)

]∞
t=0

−
∫ ∞

0

a∗(t)e−ρt (−ρu′(c∗) + u′′(c∗)ċ∗) dt.

▶ Substituting these results into D∗ yields
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Proof of Theorem 1

D∗ =

∫ ∞

0

e−ρtu′(c∗)

[
r − ρ+

u′′(c∗)

u′(c∗)
ċ∗
]
(a∗ − a)dt

− lim
t→∞

e−ρtu′(c∗(t))a∗(t) + lim
t→∞

e−ρtu′(c∗(t))a(t)

= lim
t→∞

e−ρtu′(c∗(t))a(t).

▶ Finally, let λ(t) = u′(c∗(t)). Then, the Euler equation means

λ̇(t)/λ(t) = ρ− r(t), which in turn implies

λ(t) = λ(0) exp

(
−
∫ t

0

r(s)ds

)
.

▶ Then, we obtain

D∗ = lim
t→∞

e−ρtu′(c∗(t))a(t) = u′(c∗(0)) lim
t→∞

[
a(t) exp

(
−
∫ t

0

r(s)ds

)]
,

which is nonnegative from the NPG.
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