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Plan

A discrete-time Ramsey–Cass–Koopmans model

▶ Setup

▶ Households’ and firms’ behavior

▶ Closing the model

▶ Characterization of the competitive equilibrium path

An extension: introducing the households’ labor-leisure choice

▶ Setup

▶ Households’ and firms’ behavior

▶ Closing the model
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Setup

▶ Time is discrete and extends from zero to infinity: t = 0, 1, 2, . . .

▶ Two types of economic agents: households and firms

▶ Population of households is fixed at L̄ > 0, that is, there is no

population growth

▶ There is a single final good used for consumption and investment

▶ The final good is produced from capital and labor

▶ Perfect competition

(∗) Notations are basically the same as the continuous-time Ramsey

model. (e.g., ct ∈ R+ is consumption, at ∈ R is asset ...)
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Households’ Behavior: Utility Maximization Problem

▶ Households are homogeneous

▶ A representative household’s dynamic utility maximization problem:

max
{ct,at+1}

U =

∞∑
t=0

βtu(ct), β ∈ (0, 1)

s.t. at+1 = (1 + rt)at + wt − ct t = 0, 1, 2, . . . , (1)

lim
T→∞

aT+1∏T
j=1(1 + rj)

≥ 0

where β is the discount factor

▶ Assumptions:

u′(c) > 0 ∀c ∈ R+

u′′(c) < 0 ∀c ∈ R+

limc→0+ u′(c) = ∞
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Households’ Behavior: Euler equation and TVC

▶ Lagrangian:

L =

∞∑
t=0

βt
{
u(ct) + λt

[
(1 + rt)at + wt − ct − at+1

]}
where λt is the Lagrangian multiplier.

▶ First-order-conditions (F.O.Cs):

∂L
∂ct

= 0∀t : u′(ct) = λt

∂L
∂at+1

= 0∀t : λt = β(1 + rt+1)λt+1

From these equations, we obtain

u′(ct) = βu′(ct+1)(1 + rt+1) (2)
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Households’ Behavior: Euler equation and TVC

▶ The transversality condition (TVC) is given by

lim
T→∞

βTu′(cT )aT+1 = 0 (3)

▶ Using (2), we can express (3) also as

lim
T→∞

aT+1∏T
j=1(1 + rj)

= 0
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Firms’ Behavior: Production Function
Production function: Yt = F (Kt, Lt)

Assumption 1

The production function F is twice differentiable in K and L, and

satisfies

1. Positive marginal products:

F1(K,L) ≡ ∂F (·)
∂K

> 0, F2(K,L) ≡ ∂F (·)
∂L

> 0

2. Diminishing marginal products:

F11(K,L) ≡ ∂2F (·)
∂K2

< 0, F22(K,L) ≡ ∂2F (·)
∂L2

< 0

3. Homogeneous of degree one (or linearly homogenous):

F (κK, κL) = κF (K,L) ∀κ ≥ 0
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Firms’ Behavior: Profit Maximization

▶ A representative firm’s profit maximization problem:

max
Kt,Lt

F (Kt, Lt)−RtKt − wtLt

F.O.Cs:

Rt = F1(Kt, Lt), wt = F2(Kt, Lt)

▶ Since F is homogenous of degree 1, it holds true that

F (Kt, Lt) = f(Kt/Lt)Lt

where f(x) ≡ F (x, 1)

▶ Then, the above F.O.Cs are rewritten as:

Rt = f ′(Kt/Lt) (4)

wt = f(Kt/Lt)−
Kt

Lt
f ′(Kt/Lt) (5)

where f ′(K/L) = df(K/L)/d(K/L).
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Closing the Model

▶ Market-clearing condition for assets is given by

atL̄ = Kt (6)

Let kt ≡ Kt/L̄ denote physical capital in per capita terms.

→(6) implies at = kt.

▶ The interest rate rt and the rental price of capital Rt satisfy

Rt − δ = rt (7)

▶ Market-clearing condition for labor:

L̄ = Lt (8)
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Autonomous Dynamic System

▶ Using (1)–(8), we obtain

kt+1 = f(kt) + (1− δ)kt − ct (9)

u′(ct) = βu′(ct+1)(f
′(kt+1) + 1− δ) (10)

lim
T→∞

βTu′(cT )kT+1 = 0 (11)

Quiz� �
Show it.� �

Definition 1
Given k0 > 0, the pair of sequences {kt, ct} satisfying (9)–(11) is the

competitive equilibrium path.

The procedure to characterize the equilibrium is the same as the

continuous-time model.
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Steady State

▶ As is already explained, the steady state is the situation where the

variables given by the dynamic system become constant over time.

▶ Let (k∗, c∗) denote the steady state of the system (9)–(11).

▶ From (10) with ct = ct+1,

1 = β(f ′(k∗) + 1− δ) ⇔ f ′(k∗) = 1/β − (1− δ) > 0 (12)

▶ As already shown in the slides on the Solow model, f satisfies the

following three properties:

f ′′(k) < 0, lim
k→0

f ′(k) = ∞, lim
k→∞

f ′(k) = 0

→This means that there uniquely exists k∗ > 0 that satisfies (12)
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Steady State

▶ Once we have obtained k∗, we have

c∗ = f(k∗) + (1− δ)k∗ − k∗

= f(k∗)− δk∗

(∗) If we specify u and f respectively as u(c) = ln c and f(k) = Akα

with A > 0 and α ∈ (0, 1), we can explicitly derive k∗ and c∗ as follows:

k∗ =

[
αA

1/β − (1− δ)

]1/(1−α)

> 0

c∗ = Ak∗α − δk∗

=

(
αA

1/β − (1− δ)

)1/(1−α)
1/β − 1 + (1− α)δ

α
> 0
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Linear Approximation of the System

▶ Linear approximation of (9) around the steady state (k∗, c∗):

kt+1 = k∗ + [f ′(k∗) + (1− δ)] (kt − k∗)− (ct − c∗)

= k∗ + (1/β)(kt − k∗)− (ct − c∗) (13)

▶ Linear approximation of (10) around the steady state (k∗, c∗):

u′′(c∗)(ct − c∗) = βu′(c∗)f ′′(k∗)(kt+1 − k∗) + u′′(c∗)(ct+1 − c∗)

ct+1 − c∗ = −βu′(c∗)f ′′(k∗)

u′′(c∗)
(kt+1 − k∗) + (ct − c∗)

Substituting (13) into the above equation yields

ct+1 − c∗ = −u′(c∗)f ′′(k∗)

u′′(c∗)
(kt − k∗) +

(
1 +

βu′(c∗)f ′′(k∗)

u′′(c∗)

)
(ct − c∗)

(14)
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Local Stability of Linearized System

▶ Let q∗ =
u′(c∗)f ′′(k∗)

u′′(c∗)
> 0

▶ Then, the linearized system around the steady state (k∗, c∗) is given

by (
kt+1 − k∗

ct+1 − c∗

)
= J

(
kt − k∗

ct − c∗

)

where J is the Jacobian matrix: 1/β −1

−q∗ 1 + βq∗


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Local Stability of Linearized System

▶ Characteristic equation:

p(ω) ≡ ω2 − (trJ)ω + detJ = 0 (15)

Note that

p(0) = detJ = 1/β > 0

p(1) = 1− trJ + detJ = −βq∗ < 0

Then, we can find

1. Both roots are positive, and

2. One root is strictly less than one, while the other is strictly greater

than one.

That is, (k∗, c∗) is a saddle.
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Local Stability of Linearized System

▶ Then, the general solution is(
kt − k∗

ct − c∗

)
= z1

(
v11

v21

)
(ω1)

t + z2

(
v12

v22

)
(ω2)

t (16)

where

1. ωj (j = 1, 2) is the eigenvalue of matrix J .

⇒ Without any loss of generality, let ω1 > 1 and 0 < ω2 < 1.

2. vj ≡ (v1j , v2j)
T is the eigenvector corresponding to the eigenvalue

ωj .

3. zj (j ∈ {1, 2}) is a constant value still to be determined.

▶ Imposing t = 0 in (16):(
k0 − k∗

c0 − c∗

)
= z1

(
v11

v21

)
+ z2

(
v12

v22

)
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Determination of c0

▶ Because the initial value of physical capital in per capita, k0 is

exogenously given, z1 and z2 must satisfy

z1 = 0, z2 =
k0 − k∗

v12

▶ Thus, the initial consumption, c0, must be determined such that

c0 = c∗ +
v22
v12

(k0 − k∗).

▶ Therefore, from Eq. (16), we can analytically obtain the optimal

growth path as follows:

kt − k∗ = (k0 − k∗)(ω2)
t, (17)

ct − c∗ = (v22/v12)(kt − k∗)

= (v22/v12)(k0 − k∗)(ω2)
t (18)
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An extension: introducing the households’ labor-leisure choice
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Setup
▶ The structure is basically same as the baseline model.

▶ Each household is endowed with one unit of time. Now we suppose

that he/she divides the time between

(i) hours worked, denoted by ht ∈ [0, 1], and

(ii) leisure, denoted by ℓt ∈ [0, 1],

where ht + ℓt = 1.

▶ The representative household’s lifetime utility:

U =

∞∑
t=0

βtu(ct, ℓt)

▶ Moreover, we specify the one-period utility function u as

u(ct, ℓt) = ln ct + ζ ln ℓt

= ln ct + ζ ln(1− ht), ζ > 0 (19)
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Households’ Behavior

▶ Utility maximization problem:

max
{ct,ht,at+1}

U =

∞∑
t=0

βt [ln ct + ζ ln(1− ht)]

s.t. at+1 = (1 + rt)at + wtht − ct t = 0, 1, 2, . . . (20)

lim
T→∞

aT+1∏T
j=1(1 + rj)

≥ 0

▶ Conditions for utility maximization:

ct+1/ct = β(1 + rt+1) (21)

ζct
1− ht

= wt (22)

and the TVC (3)
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Firms’ Behavior

▶ Firms’ behavior is essentially the same, that is, the conditions for

profit maximization are given by (4) and (5).

▶ Hereafter, we specify the function F as F (Kt, Lt) = AKα
t L

1−α
t , or

equivalently, f(Kt/Lt) = A(Kt/Lt)
α, where A > 0 and α ∈ (0, 1).

▶ (4) and (5) are accordingly reduced to

Rt = αA

(
Kt

Lt

)α−1

(4’)

wt = (1− α)A

(
Kt

Lt

)α

(5’)
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Equilibirum

▶ The market-clearing condition for assets is given by (6)

▶ As in the baseline model, we let kt ≡ Kt/L̄ denote physical capital

in per capita terms → (6) implies at = kt.

▶ On the other hand, the market-clearing condition for labor (8) is

now replaced by

L̄ht = Lt (23)

▶ From (4) and (5), we obtain

Rt = αA

(
kt
ht

)α−1

(24)

wt = (1− α)A

(
kt
ht

)α

(25)
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Autonomous Dynamic System

▶ From (6), (7), and (20)–(25), we obtain

kt+1 = Akαt h
1−α
t + (1− δ)kt − ct (26)

ct+1 = ctβ

[
αA

(
kt+1

ht+1

)−(1−α)

+ 1− δ

]
(27)

ct =
1− α

ζ
A

(
kt
ht

)α

(1− ht) (28)

Quiz� �
Show it.� �

The TVC is given by (11) in the equilibrium.

Definition 2
Given k0 > 0, the triple of the sequences {kt, ct, ht} satisfying (26)-(28)

together with (11) is the competitive equilibrium path.
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