A Discrete-Time Ramsey-Cass-Koopmans Model

IEE.B402. Advanced Macroeconomics

Ryoji Ohdoi
Department of Industrial Engineering and Economics,
Tokyo Institute of Technology

A discrete-time Ramsey-Cass-Koopmans model

- Setup
- Households' and firms' behavior
- Closing the model
- Characterization of the competitive equilibrium path

An extension: introducing the households' labor-leisure choice

- Setup
- Households' and firms' behavior
- Closing the model

Setup

- Time is discrete and extends from zero to infinity: $t=0,1,2, \ldots$
- Two types of economic agents: households and firms
- Population of households is fixed at $\bar{L}>0$, that is, there is no population growth
- There is a single final good used for consumption and investment
- The final good is produced from capital and labor
- Perfect competition
$(*)$ Notations are basically the same as the continuous-time Ramsey model. (e.g., $c_{t} \in \mathbb{R}_{+}$is consumption, $a_{t} \in \mathbb{R}$ is asset ...)

Households' Behavior: Utility Maximization Problem

- Households are homogeneous
- A representative household's dynamic utility maximization problem:

$$
\begin{align*}
\max _{\left\{c_{t}, a_{t+1}\right\}} & U=\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right), \quad \beta \in(0,1) \\
\text { s.t. } & a_{t+1}=\left(1+r_{t}\right) a_{t}+w_{t}-c_{t} \quad t=0,1,2, \ldots \tag{1}\\
& \lim _{T \rightarrow \infty} \frac{a_{T+1}}{\prod_{j=1}^{T}\left(1+r_{j}\right)} \geq 0
\end{align*}
$$

where β is the discount factor

- Assumptions:

$$
\begin{aligned}
& u^{\prime}(c)>0 \forall c \in \mathbb{R}_{+} \\
& u^{\prime \prime}(c)<0 \forall c \in \mathbb{R}_{+} \\
& \lim _{c \rightarrow 0^{+}} u^{\prime}(c)=\infty
\end{aligned}
$$

Households' Behavior: Euler equation and TVC

- Lagrangian:

$$
\mathcal{L}=\sum_{t=0}^{\infty} \beta^{t}\left\{u\left(c_{t}\right)+\lambda_{t}\left[\left(1+r_{t}\right) a_{t}+w_{t}-c_{t}-a_{t+1}\right]\right\}
$$

where λ_{t} is the Lagrangian multiplier.

- First-order-conditions (F.O.Cs):

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial c_{t}} & =0 \forall t: & & u^{\prime}\left(c_{t}\right)=\lambda_{t} \\
\frac{\partial \mathcal{L}}{\partial a_{t+1}} & =0 \forall t: & & \lambda_{t}=\beta\left(1+r_{t+1}\right) \lambda_{t+1}
\end{aligned}
$$

From these equations, we obtain

$$
\begin{equation*}
u^{\prime}\left(c_{t}\right)=\beta u^{\prime}\left(c_{t+1}\right)\left(1+r_{t+1}\right) \tag{2}
\end{equation*}
$$

Households' Behavior: Euler equation and TVC

- The transversality condition (TVC) is given by

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \beta^{T} u^{\prime}\left(c_{T}\right) a_{T+1}=0 \tag{3}
\end{equation*}
$$

- Using (2), we can express (3) also as

$$
\lim _{T \rightarrow \infty} \frac{a_{T+1}}{\prod_{j=1}^{T}\left(1+r_{j}\right)}=0
$$

Firms' Behavior: Production Function

Production function: $Y_{t}=F\left(K_{t}, L_{t}\right)$

Assumption 1
The production function F is twice differentiable in K and L, and satisfies

1. Positive marginal products:

$$
F_{1}(K, L) \equiv \frac{\partial F(\cdot)}{\partial K}>0, F_{2}(K, L) \equiv \frac{\partial F(\cdot)}{\partial L}>0
$$

2. Diminishing marginal products:

$$
F_{11}(K, L) \equiv \frac{\partial^{2} F(\cdot)}{\partial K^{2}}<0, F_{22}(K, L) \equiv \frac{\partial^{2} F(\cdot)}{\partial L^{2}}<0
$$

3. Homogeneous of degree one (or linearly homogenous):

$$
F(z K, z L)=\lambda F(K, L) \forall z \geq 0
$$

Firms' Behavior: Profit Maximization

- A representative firm's profit maximization problem:

$$
\max _{K_{t}, L_{t}} F\left(K_{t}, L_{t}\right)-R_{t} K_{t}-w_{t} L_{t}
$$

F.O.Cs:

$$
R_{t}=F_{1}\left(K_{t}, L_{t}\right), \quad w_{t}=F_{2}\left(K_{t}, L_{t}\right)
$$

- Since F is homogenous of degree 1 , it holds true that

$$
F\left(K_{t}, L_{t}\right)=f\left(K_{t} / L_{t}\right) L_{t}
$$

where $f(x) \equiv F(x, 1)$

- Then, the above F.O.Cs are rewritten as:

$$
\begin{align*}
& R_{t}=f^{\prime}\left(K_{t} / L_{t}\right) \tag{4}\\
& w_{t}=f\left(K_{t} / L_{t}\right)-\frac{K_{t}}{L_{t}} f^{\prime}\left(K_{t} / L_{t}\right) \tag{5}
\end{align*}
$$

where $f^{\prime}(K / L)=d f(K / L) / d(K / L)$.

Closing the Model

- Market-clearing condition for assets is given by

$$
\begin{equation*}
a_{t} \bar{L}=K_{t} \tag{6}
\end{equation*}
$$

Let $k_{t} \equiv K_{t} / \bar{L}$ denote physical capital in per capita terms.
$\rightarrow(6)$ implies $a_{t}=k_{t}$.

- The interest rate r_{t} and the rental price of capital R_{t} satisfy

$$
\begin{equation*}
R_{t}-\delta=r_{t} \tag{7}
\end{equation*}
$$

- Market-clearing condition for labor:

$$
\begin{equation*}
\bar{L}=L_{t} \tag{8}
\end{equation*}
$$

Autonomous Dynamic System

- Using (1)-(8), we obtain

$$
\begin{align*}
& k_{t+1}=f\left(k_{t}\right)+(1-\delta) k_{t}-c_{t} \tag{9}\\
& u^{\prime}\left(c_{t}\right)=\beta u^{\prime}\left(c_{t+1}\right)\left(f^{\prime}\left(k_{t+1}\right)+1-\delta\right) \tag{10}\\
& \lim _{T \rightarrow \infty} \beta^{T} u^{\prime}\left(c_{T}\right) k_{T+1}=0 \tag{11}
\end{align*}
$$

Quiz Show it.

Definition 1

Given $k_{0}>0$, the pair of sequences $\left\{k_{t}, c_{t}\right\}$ satisfying (9)-(11) is the competitive equilibrium path.

The procedure to characterize the equilibrium is the same as the continuous-time model.

Steady State

- As is already explained, the steady state is the situation where the variables given by the dynamic system become constant over time.
- Let $\left(k^{*}, c^{*}\right)$ denote the steady state of the system (9)-(11).
- From (10) with $c_{t}=c_{t+1}$,

$$
\begin{equation*}
1=\beta\left(f^{\prime}\left(k^{*}\right)+1-\delta\right) \Leftrightarrow f^{\prime}\left(k^{*}\right)=1 / \beta-(1-\delta)>0 \tag{12}
\end{equation*}
$$

- As already shown in the slides on the Solow model, f satisfies the following three properties:

$$
f^{\prime \prime}(k)<0, \quad \lim _{k \rightarrow 0} f^{\prime}(k)=\infty, \quad \lim _{k \rightarrow \infty} f^{\prime}(k)=0
$$

\rightarrow This means that there uniquely exists $k^{*}>0$ that satisfies (12)

Steady State

- Once we have obtained k^{*}, we have

$$
\begin{aligned}
c^{*} & =f\left(k^{*}\right)+(1-\delta) k^{*}-k^{*} \\
& =f\left(k^{*}\right)-\delta k^{*}
\end{aligned}
$$

(*) If we specify u and f respectively as $u(c)=\ln c$ and $f(k)=A k^{\alpha}$ with $A>0$ and $\alpha \in(0,1)$, we can explicitly derive k^{*} and c^{*} as follows:

$$
\begin{aligned}
k^{*} & =\left[\frac{\alpha A}{1 / \beta-(1-\delta)}\right]^{1 /(1-\alpha)}>0 \\
c^{*} & =A k^{* \alpha}-\delta k^{*} \\
& =\left(\frac{\alpha A}{1 / \beta-(1-\delta)}\right)^{1 /(1-\alpha)} \frac{1 / \beta-1+(1-\alpha) \delta}{\alpha}>0
\end{aligned}
$$

Linear Approximation of the System

- Linear approximation of (9) around the steady state $\left(k^{*}, c^{*}\right)$:

$$
\begin{align*}
k_{t+1} & =k^{*}+\left[f^{\prime}\left(k^{*}\right)+(1-\delta)\right]\left(k_{t}-k^{*}\right)-\left(c_{t}-c^{*}\right) \\
& =k^{*}+(1 / \beta)\left(k_{t}-k^{*}\right)-\left(c_{t}-c^{*}\right) \tag{13}
\end{align*}
$$

- Linear approximation of (10) around the steady state $\left(k^{*}, c^{*}\right)$:

$$
\begin{aligned}
u^{\prime}\left(c^{*}\right)\left(c_{t}-c^{*}\right) & =\beta u^{\prime}\left(c^{*}\right) f^{\prime \prime}\left(k^{*}\right)\left(k_{t+1}-k^{*}\right)+u^{\prime \prime}\left(c^{*}\right)\left(c_{t+1}-c^{*}\right) \\
c_{t+1}-c^{*} & =-\frac{\beta u^{\prime}\left(c^{*}\right) f^{\prime \prime}\left(k^{*}\right)}{u^{\prime \prime}\left(c^{*}\right)}\left(k_{t+1}-k^{*}\right)+\left(c_{t}-c^{*}\right)
\end{aligned}
$$

Substituting (13) into the above equation yields

$$
\begin{equation*}
c_{t+1}-c^{*}=-\frac{u^{\prime}\left(c^{*}\right) f^{\prime \prime}\left(k^{*}\right)}{u^{\prime \prime}\left(c^{*}\right)}\left(k_{t}-k^{*}\right)+\left(1+\frac{\beta u^{\prime}\left(c^{*}\right) f^{\prime \prime}\left(k^{*}\right)}{u^{\prime \prime}\left(c^{*}\right)}\right)\left(c_{t}-c^{*}\right) \tag{14}
\end{equation*}
$$

Local Stability of Linearized System

- Let $q^{*}=\frac{u^{\prime}\left(c^{*}\right) f^{\prime \prime}\left(k^{*}\right)}{u^{\prime \prime}\left(c^{*}\right)}>0$
- Then, the linearized system around the steady state $\left(k^{*}, c^{*}\right)$ is given by

$$
\binom{k_{t+1}-k^{*}}{c_{t+1}-c^{*}}=J\binom{k_{t}-k^{*}}{c_{t}-c^{*}}
$$

where J is the Jacobian matrix:

$$
\left(\begin{array}{cc}
1 / \beta & -1 \\
-q^{*} & 1+\beta q^{*}
\end{array}\right)
$$

Local Stability of Linearized System

- Characteristic equation:

$$
\begin{equation*}
p(\omega) \equiv \omega^{2}-(\operatorname{tr} J) \omega+\operatorname{det} J=0 \tag{15}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& p(0)=\operatorname{det} J=1 / \beta>0 \\
& p(1)=1-\operatorname{tr} J+\operatorname{det} J=-\beta q^{*}<0
\end{aligned}
$$

Then, we can find

1. Both roots are positive, and
2. One root is strictly less than one, while the other is strictly greater than one.
That is, $\left(k^{*}, c^{*}\right)$ is a saddle.

Local Stability of Linearized System

- Then, the general solution is

$$
\begin{equation*}
\binom{k_{t}-k^{*}}{c_{t}-c^{*}}=z_{1}\binom{v_{11}}{v_{21}}\left(\omega_{1}\right)^{t}+z_{2}\binom{v_{12}}{v_{22}}\left(\omega_{2}\right)^{t} \tag{16}
\end{equation*}
$$

where

1. $\omega_{j}(j=1,2)$ is the eigenvalue of matrix J.
\Rightarrow Without any loss of generality, let $\omega_{1}>1$ and $0<\omega_{2}<1$.
2. $v_{j} \equiv\left(v_{1 j}, v_{2 j}\right)^{T}$ is the eigenvector corresponding to the eigenvalue ω_{j}.
3. $z_{j}(j \in\{1,2\})$ is a constant value still to be determined.

- Imposing $t=0$ in (16):

$$
\binom{k_{0}-k^{*}}{c_{0}-c^{*}}=z_{1}\binom{v_{11}}{v_{21}}+z_{2}\binom{v_{12}}{v_{22}}
$$

Determination of c_{0}

- Because the initial value of physical capital in per capita, k_{0} is exogenously given, z_{1} and z_{2} must satisfy

$$
z_{1}=0, z_{2}=\frac{k_{0}-k^{*}}{v_{12}}
$$

- Thus, the initial consumption, c_{0}, must be determined such that $c_{0}=c^{*}+\frac{v_{22}}{v_{12}}\left(k_{0}-k^{*}\right)$.
- Therefore, from Eq. (16), we can analytically obtain the optimal growth path as follows:

$$
\begin{align*}
k_{t}-k^{*} & =\left(k(0)-k^{*}\right)\left(\omega_{2}\right)^{t} \tag{17}\\
c_{t}-c^{*} & =\left(v_{21} / v_{11}\right)\left(k_{t}-k^{*}\right) \\
& =\left(v_{21} / v_{11}\right)\left(k_{0}-k^{*}\right)\left(\omega_{2}\right)^{t} \tag{18}
\end{align*}
$$

An extension: introducing the households' labor-leisure choice

Setup

- The structure is basically same as the baseline model.
- Each household is endowed with one unit of time. Now we suppose that he/she divides the time between
(i) hours worked, denoted by $h_{t} \in[0,1]$, and
(ii) leisure, denoted by $\ell_{t} \in[0,1]$,
where $h_{t}+\ell_{t}=1$.
- The representative household's lifetime utility:

$$
U=\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}, \ell_{t}\right)
$$

- Moreover, we specify the one-period utility function u as

$$
\begin{align*}
u\left(c_{t}, \ell_{t}\right) & =\ln c_{t}+\zeta \ln \ell_{t} \\
& =\ln c_{t}+\zeta \ln \left(1-h_{t}\right) \tag{19}
\end{align*}
$$

Households' Behavior

- Utility maximization problem:

$$
\begin{align*}
\max _{\left\{c_{t}, h_{t}, a_{t+1}\right\}} & U=\sum_{t=0}^{\infty} \beta^{t}\left[\ln c_{t}+\zeta \ln \left(1-h_{t}\right)\right] \\
\text { s.t. } & a_{t+1}=\left(1+r_{t}\right) a_{t}+w_{t} h_{t}-c_{t} \quad t=0,1,2, \ldots \tag{20}\\
& \lim _{T \rightarrow \infty} \frac{a_{T+1}}{\prod_{j=1}^{T}\left(1+r_{j}\right)} \geq 0
\end{align*}
$$

- Conditions for utility maximization:

$$
\begin{align*}
c_{t+1} / c_{t} & =\beta\left(1+r_{t+1}\right) \tag{21}\\
\frac{\zeta c_{t}}{1-h_{t}} & =w_{t} \tag{22}
\end{align*}
$$

and the TVC (3)

Firms' Behavior

- Firms' behavior is essentially the same, that is, the conditions for profit maximization are given by (4) and (5).
- Hereafter, we specify the function F as $F\left(K_{t}, L_{t}\right)=A K_{t}^{\alpha} L_{t}^{1-\alpha}$, or equivalently, $f\left(K_{t} / L_{t}\right)=A\left(K_{t} / L_{t}\right)^{\alpha}$, where $A>0$ and $\alpha \in(0,1)$.
- (4) and (5) are accordingly reduced to

$$
\begin{align*}
R_{t} & =\alpha A\left(\frac{K_{t}}{L_{t}}\right)^{\alpha-1} \tag{4'}\\
w_{t} & =(1-\alpha) A\left(\frac{K_{t}}{L_{t}}\right)^{\alpha} \tag{5'}
\end{align*}
$$

Equilibirum

- The market-clearing condition for assets is given by (6)
- As in the baseline model, we let $k_{t} \equiv K_{t} / \bar{L}$ denote physical capital in per capita terms $\rightarrow(6)$ implies $a_{t}=k_{t}$.
- On the other hand, the market-clearing condition for labor (8) is now replaced by

$$
\begin{equation*}
\bar{L} h_{t}=L_{t} \tag{23}
\end{equation*}
$$

- From (4) and (5), we obtain

$$
\begin{align*}
R_{t} & =\alpha A\left(\frac{k_{t}}{h_{t}}\right)^{\alpha-1} \tag{24}\\
w_{t} & =(1-\alpha) A\left(\frac{k_{t}}{h_{t}}\right)^{\alpha} \tag{25}
\end{align*}
$$

Autonomous Dynamic System

- From (6), (7), and (20)-(25), we obtain

$$
\begin{align*}
k_{t+1} & =A k_{t}^{\alpha} h_{t}^{1-\alpha}+(1-\delta) k_{t}-c_{t} \tag{26}\\
c_{t+1} & =c_{t} \beta\left[\alpha A\left(\frac{k_{t+1}}{h_{t+1}}\right)^{-(1-\alpha)}+1-\delta\right] \tag{27}\\
c_{t} & =\frac{1-\alpha}{\zeta} A\left(\frac{k_{t}}{h_{t}}\right)^{\alpha}\left(1-h_{t}\right) \tag{28}
\end{align*}
$$

Quiz Show it.

The TVC is given by (11) in the equilibrium.

Definition 2

Given $k_{0}>0$, the triple of the sequences $\left\{k_{t}, c_{t}, h_{t}\right\}$ satisfying (26)-(28) together with (11) is the competitive equilibrium path.

