Endogenous Growth Theory (2): The Role of Public Policies IEE.B402. Advanced Macroeconomics

Ryoji Ohdoi

Department of Industrial Engineering and Economics,

Tokyo Institute of Technology

- On the inefficiency of competitive equilibrium in the model of Romer (1986)
 - \blacktriangleright Social planner's problem \rightarrow Derivation of social optimum
 - Comparison btw market equilibrium and social optimum
- Endogenous growth with productive government spending
 - Households' and firms' behavior
 - Characterization of equilibrium
 - Growth-maximizing tax rate

Brief Review of Romer (1986)

Key assumptions (LBD externalities)

- 1. The technology level A(t) = the aggregate stock of capital K(t)
- 2. Each agent takes A(t) as given.

Although each firm takes A(t) as given, this technology advances endogenously for the economy as a whole.

We have shown the unique existence of competitive equilibrium path, where the economy grows at a positive constant rate from the initial date.

Implications

- Not only from the model by itself, the importance of Paul Romer's paper stems from its emphasis on the externalities.
- Although such a nonrival nature makes a sustained growth possible, at the same time it makes the equilibrium allocation inferior to the first-best allocation.
- Recall that the dynamic system in the market equilibrium is given by:

$$\dot{K}(t) = (\bar{A} - \delta)K(t) - C(t)$$
(1)

$$\dot{C}(t)/C(t) = \gamma \equiv \frac{1}{\theta}(\alpha \bar{A} - \delta - \rho)$$
 (2)

$$\lim_{t \to \infty} K(t) \exp[-(\alpha \bar{A} - \delta)t] = 0$$
(3)

where $C(t) = c(t)\bar{L}$ and $\bar{A} = (z\bar{L})^{1-\alpha}$.

Social Planner' Problem

 \downarrow

Social planner's problem:

$$\max_{\{c(t),K(t)\}} \quad U = \int_0^\infty e^{-\rho t} \frac{c(t)^{1-\theta} - 1}{1-\theta} dt$$

s.t. $\dot{K}_t = (\bar{A} - \delta)K(t) - c(t)\bar{L}$
 $K(0) > 0$ given.

Conditions for social optimum:

$$\dot{K}(t) = (\bar{A} - \delta)K(t) - C(t)$$
(4)

$$\dot{C}(t)/C(t) = \gamma^{sp} \equiv \frac{1}{\theta}(\bar{A} - \delta - \rho)$$
(5)

$$\lim_{t \to \infty} K(t) \exp[-(\bar{A} - \delta)t] = 0$$
(6)

<ロ > < 団 > < 臣 > < 臣 > < 臣 > 三 の Q (や 5/21

Inefficiency of Market Equilibrium in a LBD model

From (2), (5), and the fact that αĀ < Ā, we arrive at the following proposition:</p>

Proposition 1

In the endogenous growth model of learning-by-doing externalities,

- 1. The allocation in the competitive equilibrium is inferior to the first best allocation,
- 2. The growth rate in the competitive equilibrium, γ , is lower than that in the socially optimal allocation, γ^{sp} .

A Remedy: The Policy to Achieve the First-Best Allocation

- Back to the market economy, and introduce the government's activity.
- Suppose that the profit maximization problem of firm *i* is now given by

$$\max_{k_i(t), L_i(t)} \left[k_i(t)^{\alpha} A(t)^{1-\alpha} - (1-s)R(t)k_i(t) - w(t) \right] L_i(t)$$

where $s \in (0, 1)$: the subsidy rate.

First-order-conditions (F.O.Cs):

$$(1-s)R(t) = \alpha \left(\frac{k_i(t)}{A(t)}\right)^{-(1-\alpha)}$$
(7)
$$w(t) = (1-\alpha)k_i(t)^{\alpha}A(t)^{1-\alpha}$$
(8)

A Remedy: The Policy to Achieve the First-Best Allocation

The subsidy is financed by the lump-sum tax:

1. Household's budget constraint:

$$\dot{a}(t) = r(t)a(t) + w(t) - c(t) - T(t)/\bar{L}$$

$$\Leftrightarrow \dot{K}(t) = (R(t) - \delta)K(t) + w(t)\bar{L} - C(t) - T(t) \quad (C(t) \equiv c(t)\bar{L})$$

2. Euler equation:

$$\dot{C}(t)/C(t) = \frac{1}{\theta}(r(t) - \rho)$$
$$= \frac{1}{\theta}(R(t) - \delta - \rho)$$

3. Government's budget constraint:

$$sR(t)K(t) = T(t)$$

The market-clearing conditions are the same as those in the baseline model on July 6.

A Remedy: The Policy to Achieve the First-Best Allocation

Then, we can show the following proposition:

Proposition 2

The market economy achieves the first-best allocation if $s = 1 - \alpha$.

Endogenous growth with productive government spending

Introduction

- In this section, we show that productive government spending (e.g., public services) is another possible source of sustained growth.
- ► This type of model is proposed by Barro (1990).

 (\ast) The notations used here is almost the same as the model with LBD externalities.

Firms' Behavior: Production Function

- Suppose that there are M firms, indexed by $i \in [0, M]$.
- Firm *i*'s production function:

$$Y_{i}(t) = \bar{Z}K_{i}(t)^{\alpha}(G(t)L_{i}(t))^{1-\alpha}$$

= $\bar{Z}k_{i}(t)^{\alpha}G(t)^{1-\alpha}L_{i}(t), \quad \bar{Z} > 0, \alpha \in (0,1)$ (9)

G(t): public services provided by the government $k_i(t)$: firm *i*'s capital-labor ratio

It is assumed that the public services are public goods, i.e., the goods that are both non-excludable and non-rivalrous.

Firm's Behavior: Profit Maximization

Profit maximization problem of firm i:

$$\max_{k_i(t),L_i(t)} \left[(1-\tau)\bar{Z}k_i(t)^{\alpha}G(t)^{1-\alpha} - R(t)k_i(t) - w(t) \right] L_i(t)$$

with G(t) given.

► R(t): the rental price of capital, satisfying $R(t) - \delta = r(t)$

• $au \in (0,1)$: the tax rate levied on the sales of each firm Y_i

► F.O.Cs:

$$R(t) = (1 - \tau)\alpha \bar{Z} \left(\frac{k_i(t)}{G(t)}\right)^{-(1-\alpha)}$$
(10)

$$w(t) = (1 - \tau)(1 - \alpha)\bar{Z}k_i(t)^{\alpha}G(t)^{1 - \alpha}$$
(11)

Thus, all firms determine the same capital-labor ratio.

Households' Behavior

• There are homogeneous households of size $\overline{L} > 0$.

- The utility maximization problem of a household is essentially the same as that in the LBD model.
 ↓
- Euler equation and TVC:

$$\frac{\dot{C}(t)}{C(t)} = \frac{1}{\theta} (R(t) - \delta - \rho)$$
(12)

$$\lim_{t \to \infty} K(t) \exp(-\int_0^t (R(s) - \delta) ds) = 0$$
(13)

Government

The government's budget constraint:

$$\underbrace{G(t)}_{\text{expenditure}} = \underbrace{\tau \int_{0}^{M} Y_{i}(t) di}_{\text{tax revenue}}$$
(14

Closing the Model

Let L(t) and K(t) respectively denote the aggregate demand for labor and capital:

$$L(t) \equiv \int_0^M L_i(t)di, \quad K(t) \equiv \int_0^M K_i(t)di$$

Market-clearing conditions:

Asset market: $K(t) = a(t)\overline{L}$ (15) Labor market: $L(t) = \overline{L}$ (16)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

16/21

Equilibrium Supply of Public Services

As also verified in the LBD model, we can show that

$$k_i(t) = K(t)/\bar{L} \tag{17}$$

▶ The government budget constraint (14) is rewritten as

$$G(t) = \tau \int_0^M \bar{Z}k_i(t)^{\alpha}G(t)^{1-\alpha}L_i(t)di$$
$$= \tau \bar{Z} \left(\frac{K(t)}{L(t)}\right)^{\alpha}G(t)^{1-\alpha}\underbrace{\int_0^M L_i(t)di}_{=L(t)}$$
$$= \tau \bar{Z}K(t)^{\alpha}G(t)^{1-\alpha}\bar{L}^{1-\alpha} \quad (\because \mathsf{Eq.}(16))$$

Equilibrium supply of public services:

$$G(t) = \left[\tau \bar{Z} \bar{L}^{1-\alpha}\right]^{1/\alpha} K(t) \tag{18}$$

Equilibrium

• Hereafter, let $\bar{A} \equiv (\bar{Z}\bar{L}^{1-\alpha})^{1/\alpha}$.

Substituting (16)–(18) into (10) and (11),

$$R(t) = (1 - \tau)\tau^{\frac{1 - \alpha}{\alpha}}\alpha\bar{A}$$
(19)

$$w(t) = (1 - \tau)\tau^{\frac{1 - \alpha}{\alpha}} (1 - \alpha)\bar{A}K(t)/\bar{L}$$
 (20)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

18 / 21

Aggregate output:

$$Y_t \equiv \int_0^M Y_i(t) di = \tau^{\frac{1-\alpha}{\alpha}} \bar{A}K(t)$$

Dynamic System

From (19) and (20), we can obtain the ynamics of K(t):

$$\dot{K}(t) = R(t)K(t) + w(t)\bar{L} - C(t)$$

= $(1 - \tau)\tau^{\frac{1-\alpha}{\alpha}}\bar{A}K(t) - \delta K(t) - C(t)$ (21)

Substituting (19) into (12), the dynamics of C(t) is given by

$$\frac{\dot{C}(t)}{C(t)} = \gamma \equiv \frac{1}{\theta} \left[(1-\tau)\tau^{\frac{1-\alpha}{\alpha}}\alpha\bar{A} - \delta - \rho \right]$$
(22)

We can show the unique existence of balanced growth path in the same way as the LBD model.

Effect of Tax on the Growth Rate

 By following the same procedure as the LBD model, we can show that

$$\dot{C}(t)/C(t) = \dot{K}(t)/K(t) = \gamma.$$

How does a change in τ affect γ?

$$\frac{d\gamma}{d\tau} = \frac{\alpha \bar{A}}{\theta} \left(-\tau \frac{1-\alpha}{\alpha} + (1-\tau) \frac{1-\alpha}{\alpha} \tau^{\frac{1-2\alpha}{\alpha}} \right) \\
= \frac{\alpha \bar{A}}{\theta} \tau^{\frac{1-\alpha}{\alpha}} \left(-1 + \frac{1-\tau}{\tau} \frac{1-\alpha}{\alpha} \right) \stackrel{\geq}{\leq} 0 \iff \tau \stackrel{\leq}{\leq} 1 - \alpha \quad (23)$$

Proposition 3

The growth rate is maximized at $\tau = 1 - \alpha$.

References

- Barro, R. J. (1990) "Government Spending in a Simple Model of Endogenous Growth," *Journal of Political Economy* 98, S103–S125.
- Barro, R. J. and X. Sala-i-Martin (2004) *Economic Growth*, Second Edition, Cambridge, MIT Press.