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Introduction

» Recall that in the Solow-Swan model, consumption C' and savings S

are proportional to current income Y:
S=sY, C=(1-5s)Y,

where s € (0, 1) is the saving rate which is assumed to be exogenous.
» Ramsey-Cass-Koopmans model (or simply, Ramsey model):

» This model differs from the Solow-Swan model in the respect that it
endogenizes the savings rate by explicitly modeling the consumer’s

infinite-horizon dynamic optimization.

» Although the original Ramsey-Cass-Koopmans model is the model in
continuous time, | will initially develop this model in discrete time.
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Model
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Households: Demographics and Utility Function

Population growth:
L(t)(= dL(t)/dt) = nL(t) & L(t) = L(0)e™. (1)
(*) L(0) is normalized to one.
Lifetime utility function:
U= /O e PLL(t)u(c(t))dt
= /0 b e~ Pty (e(t))dt (2)

Assumption 1

p>n
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Households

Let A(¢) denote asset holdings of the representative household at ¢.

Flow budget constraint:

» 7(t): interest rate.

(*) We will discuss the relationship between r and R soon later.

Define a as follows:
Alt)

a(t) = 0]

Then, we obtain the flow budget equation in per-captia terms:
a(t) = (r(t) —n)a(t) + w(t) — c(t) (4)
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Utility Maximization Problem

The representative household’s utility maximization problem
max U0:/ exp(—(p — n)t)u(c(t))dt

amx - U0) = [ exp(~(o = mpule(t)

st a(t) = (r(t) —n)a(t) + w(t) — c(t)

lim a(t) exp < /0 t(r(s) - n)ds> >0

t—o00

with taking the following variables as given:
1. a(0): the initial condition

2. Times paths of r(t) and w(t), which implies that each household is
a price taker
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Euler Equation and Transversality Condition

Euler equation:

> o(c) = —CZ//;S) > OVe
TVC:
tlggo a(t) exp <—/0 (r(s) — n)ds) =0 (-v>0).
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No-Arbitrage Condition

Each household has the opportunity to hold the following two types of
assets

1. capital k()
2. individual bonds b,(t)

(*) When introduce the government's activity, public bonds are added.

The “no-arbitrage-conation” btw the two assets:

R(t) — 6 = r(t) (10)
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Firms

A representative firm's profit maximization problem:

e F(E().L(0) ~ ROK() - w(®)L(),

Since F(K, L) = f(k)L, the above problem can be converted to

k(rtl)lﬁt)[f(k(t)) — R()k(t) — w()]L(?)

Competitive factor markets then imply:

R(t) = f'(k(t)), (11)

and

w(t) = f(k(t) — k@) (k(1)). (12)
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Market—Clearing Conditions

> Let B,(t) denote the aggregate amount of individual bonds
(A(t) = K(t) + Bp(t))
» Since the “lending&borrowing” in an individual sense is cancelled

out as a whole,

B,(t) = 0.

» Then, asset market-clearing condition in per capita terms is given by

a(t) = k(t). (14)
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Competitive equilibrium path
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Definition

» The zero-profit-condition of firms implies
R(t)k(t) + w(t) = f(k(t))
I

» The household's budget constraint is rewritten as
E(t) = (R(t) — & — n)k(t) + w(t) — ¢(t)
= f(k(t)) — (n+0)k(t) — c(t) (16)

which is equivalent to the market-clearing condition for the final

good.
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Definition

» Since r(t) = R(t) — 6 = f'(k(t)) — ¢, the Euler eq. becomes

4 _ (k1) — 5 — p) (17)

» TVC is now expressed as

lim k(t)exp ( /Ot[f'(k(s)) —(n+ 5)]d5) =0 (18)

t—o0
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Definition

Definition 1 (Competitive Equilibrium Path)
Given £(0) > 0, the pair of paths {k(t),c(t)} which jointly satisfy
(16)—(18) constitute a competitive equilibrium path.

> Egs. (16) - (18) :
— The system of differential equations wrt k(t) and c(t) with the

terminal condition

— These equations are called the Autonomous Dynamic System

15/35



How can we derive the competitive equilibrium path?

Basically we use the following procedure:
1. Examine the existence and uniqueness of the Steady State
» SS= the path in which k(¢) and c(t) are constant.
2. Examine the stability of the steady state:

3. Check whether or not the Transitional Dynamics to the steady state

is uniquely determined or not.
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Existence and Uniqueness of Steady State
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Steady State

» From the Euler equation with ¢ =0,

» Then, k* is determined as
f(k*)=p+d>n+ad. (19)

(%) Eq. (19) pins down the steady-state capital-labor ratio only as a
function of the production function, the discount rate and the
depreciation rate
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Steady State

» Once, k* is determined,
c=Ck") = f(k*) — (n+ 6)k*. (20)

» Note that

C'(k)y=f'(k)—(n+8) 20« f'(k) Zn+4.

> Let us define kg4 such that f/(k,) =n+4.
k4 is golden rule of capital stock.

» Since " <0,
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Steady State

Ct:O
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Modified Golden Rule

> k* is called the modified golden rule, which is
smaller than the golden rule.

» Note that k£*
> maximizes life-time utility, because it is derived by solving the utility

maximization problem,

» does NOT maximize steady-state consumption (to see why, see

figure)

This implies that achieving the golden rule is not desirable from the

viewpoint of utility maximizing.
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Stability of SS and transitional dynamics
Analysis (1): Graphical analysis using Phase Diagram
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Transitional Dynamics
From the dynamics of k(t),

A

k() Z 0o c(t) S f(k(1) — (n+ 0)k(t) = C(k(t)).

>

Ct
A
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Transitional Dynamics
From the dynamics of ¢(t) with ¢(t) > 0,

é(t) Z 0 k(t) S k™

Cy .
A ¢ =0

> k,
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Transitional Dynamics

unstable arm =

0 stable arm

25/35



Stability of SS and transitional dynamics
Analysis (2): Analysis using Linear Approximation of System (16)—(17)
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Local Stability of Linearized System

> Linear approximation of (16) in the neighborhood of SS:

k(t) = [f' (k) — (n+ 0)](k(t) — k) — (e(t) — )
= (p=n)(k(t) = k%) = (c(t) = ¢7)

> Linear approximation of (17) in the neighborhood of SS:

ett) = Lt - i)

L Oy
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Local Stability of Linearized System
.. The linearized (or local) dynamics:

k@) \ k(t) — k*
< é(t) ) _J< e(t) — ¢* )

where J is Jacobian matrix:
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Local Stability of Linearized System

It is well known that the general solution is

R Y B e SR e e

> w; (=1,2): the eigenvalue of matrix J;
> v; = (v1,v2;)7: the eigenvector corresponding to w; (j € {1,2});

> Z; (j € {1,2}): a constant value still to be determined
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Characteristic Equation

> w; is determined from the following characteristic equation:

p—n—w —1

det(J — wl) = 0 & det P =0,
D
ey (c*)
1/ * *
@wQ—(p—n)w—l—M =0.

ey (c*)

» It is shown that there are two real eigenvalues, one negative and one

positive (consider the reason why).

» Without any loss of generality, let w; > 0 and ws < 0 respectively
denote the positive and the negative eigenvalues.
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Determination of Initial Consumption

Determination of ¢(0):

k(O) -k = Z1U11 + Z2U12 and
c(0) = ¢* = Z1va1 + Zav2o (25)

Thus, the initial consumption, ¢(0), is determined such that

1. Z; = 0: otherwise the economy diverges from the steady state, and

such a path violates either the Keynes-Ramsey rule or the TVC;
2. Zy = (k(0) — k*)/v12: otherwise (25) does not hold given £(0).
Lemma 2
22 (0 — k).

The initial consumption is determined as ¢(0) = ¢* + —(k(0)
V11
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Uniqueness of Equilibrium Path

Therefore, from (24), we can analytically obtain the optimal growth path
as follows:
k(t) — k* = (k(0) — k") exp(wat) and

c(t) —¢* = %(km) — k") exp(wot) (26)

Proposition 1

There exists a unique competitive equilibrium path.
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The social planner’s problem
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Social Planner's Problem

Consider an economy in which a social planner directly determines the
pair of time paths {c(¢), k(t)} so as to maximize

max /000 exp(—(p — n)t)u(c(t))dt,

st k(t) = f(k(t)) — (n+ 8)k(t) — c(t),
k(0) > 0 given

(x) This is the “original” formulation by Cass (1965) and Koopmans
(1965).

The time paths {c(t), k(¢)} that solves the above problem is called the
First-Best Allocation.
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Theorem

Theorem 3

The competitive equilibrium path achieves the first-best allocation.
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