Mathematical Preliminary (1)
 Infinite-Horizon Dynamic Optimization in
 Discrete Time

IEE.B402. Advanced Macroeconomics

Ryoji Ohdoi
Department of Industrial Engineering and Economics,
Tokyo Institute of Technology

- Preliminary: two-period utility maximization problem
\rightarrow A key condition: Euler equation
- Infinite-horizon utility maximization problem
- Two key conditions:

Euler equation and the transversality condition (TVC)

- Sufficiency of Euler eq. and TVC for utility maximization
- How to derive the utility-maximizing conditions
- Lagrangian approach
- Recursive approach using the Dynamic Programming technique
- Euler equation in the general problem
- A firm's present value maximization problem

Notation

Notation:

- Time is discrete, indexed by t
- c_{t} : consumption
- a_{t} : assets evaluated at the beginning of a period
- r_{t} : real interest rate
- w_{t} : real wage rate

Budget constraint in period t :

$$
r_{t} a_{t}+w_{t}=c_{t}+\underbrace{a_{t+1}-a_{t}}_{\text {savings } / \text { borrowing }}
$$

$1+r_{t}$: gross interest rate (i.e., interest rate incl. principal)

Preliminary: Two-Period Problem

Objective function $=u\left(c_{0}\right)+\beta u\left(c_{1}\right)$

- $\beta \in(0,1)$: discount factor
- $u(\cdot)$: one-period utility function

Assumption 1
The function u is

1. differentiable (of necessary times)
2. increasing: $u^{\prime}(c)>0$
3. strictly concave: $u^{\prime \prime}(c)<0$

Assumption 2
The function u satisfies the Inada condition: $\lim _{c \rightarrow 0^{+}} u^{\prime}(c)=\infty$.

Preliminary: Two-Period Problem

A household's two-period utility maximization problem:

$$
\begin{array}{rl}
\max _{c_{0}, c_{1}, a_{1}, a_{2}} & u\left(c_{0}\right)+\beta u\left(c_{1}\right) \\
\text { s.t. } & \left(1+r_{0}\right) a_{0}+w_{0}=c_{0}+a_{1}, \\
& \left(1+r_{1}\right) a_{1}+w_{1}=c_{1}+a_{2}, \\
& a_{2} \geq 0 . \tag{3}
\end{array}
$$

(*) A decision maker takes his/her initial assets a_{0} and $\left(r_{t}, w_{t}\right)$ as given.
$(*)$ The constraint $c_{t} \geq 0$ is omitted, because this never binds from Assumption 2.

Euler Equation and A Terminal Condition

Utility-maximizing conditions:

$$
\begin{gather*}
u^{\prime}\left(c_{0}\right)=\beta u^{\prime}\left(c_{1}\right)\left(1+r_{1}\right), \tag{4}\\
a_{2}=0 . \tag{5}
\end{gather*}
$$

and (1)-(2)

- (4) is called the Euler equation.
- (5) means that the constraint (3) binds.

Intuition of (5) is quite simple: Under the situation that he/she is not allowed to leave a debt, it is optimal to consume out of his/her wealth.

From finite- to infinite-horizon problems

Objective Function and Feasible Plan

Let $\left\{x_{t}\right\}$ denote the infinite sequence of a variable x_{t}.

Objective function:

$$
\begin{equation*}
U\left(\left\{c_{t}\right\}\right)=\lim _{T \rightarrow \infty} \sum_{t=0}^{T} \beta^{t} u\left(c_{t}\right)=\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) . \tag{6}
\end{equation*}
$$

Feasible set in period t :

$$
\begin{equation*}
\Omega_{t}\left(a_{t}\right)=\left\{\left(c, a^{\prime}\right) \mid\left(1+r_{t}\right) a_{t}+w_{t}=c+a^{\prime}\right\} . \tag{7}
\end{equation*}
$$

Additional constraint:

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{a_{T+1}}{\prod_{j=1}^{T}\left(1+r_{j}\right)} \geq 0 . \tag{8}
\end{equation*}
$$

- $\prod_{j=1}^{T}\left(1+r_{j}\right)=\left(1+r_{1}\right) \times\left(1+r_{2}\right) \times \cdots \times\left(1+r_{T}\right)$.
- (8) is called the No-Ponzi-Game condition (NPG)

Objective Function and Feasible Plan

The pair of sequences $\left\{c_{t}, a_{t+1}\right\}$ satisfying

- $\left(c_{t}, a_{t+1}\right) \in \Omega_{t}\left(a_{t}\right)$ for all t, and
- NPG (8),
is called the feasible plan or admissible plan.
It is assumed $U\left(\left\{c_{t}\right\}\right)$ in (6) is well-defined: i.e., $\lim _{T \rightarrow \infty} \sum_{t=0}^{T} \beta^{t} u\left(c_{t}\right)$ is finite for all feasible plans.

Infinite-Horizon Problem

Infinite-horizon utility maximization problem (UMP):

$$
\begin{align*}
\max _{\left\{c_{t}, a_{t+1}\right\}} & U\left(\left\{c_{t}\right\}\right)=\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \\
\text { s.t. } & a_{t+1}=\left(1+r_{t}\right) a_{t}+w_{t}-c_{t} \quad t=0,1,2, \ldots, \tag{9}\\
& \lim _{T \rightarrow \infty} \frac{a_{T+1}}{\prod_{j=1}^{T}\left(1+r_{j}\right)} \geq 0
\end{align*}
$$

Sufficient Conditions of Infinite-Horizon UMP

Theorem 1 (Sufficiency)
Suppose that $u(c)$ satisfies Assumption 1. Then, given a_{0} and $\left\{r_{t}, w_{t}\right\}$, the pair of sequences $\left\{c_{t}, a_{t+1}\right\}$ is the utility-maximizing plan if it satisfies (9) and

$$
\begin{align*}
u^{\prime}\left(c_{t}\right)= & \beta u^{\prime}\left(c_{t+1}\right)\left(1+r_{t+1}\right) \quad t \tag{10}\\
& \lim _{T \rightarrow \infty} \beta^{T} u^{\prime}\left(c_{T}\right) a_{T+1} \tag{11}
\end{align*}=0,1,2, \ldots,
$$

(10) is the Euler equation, and (11) is called the transversality condition (TVC).

Proof of Theorem 1

- Let $\left\{c_{t}^{*}, a_{t+1}^{*}\right\}$ denote the pair of sequences satisfying (9)-(11).
- Since u is strictly concave, we have the following inequality:

$$
u\left(c_{t}^{*}\right)>u\left(c_{t}\right)+u^{\prime}\left(c_{t}^{*}\right)\left(c_{t}^{*}-c_{t}\right)
$$

where c_{t} can be arbitrarily chosen from $\Omega_{t}\left(a_{t}\right)$ except c_{t}^{*}.

- Then, we have

$$
\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}^{*}\right)-\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)>D^{*}
$$

where

$$
D^{*} \equiv \sum_{t=0}^{\infty} \beta^{t} u^{\prime}\left(c_{t}^{*}\right)\left(c_{t}^{*}-c_{t}\right)
$$

Therefore, we can show this theorem by showing $D^{*} \geq 0$.

Proof of Theorem 1

- Since both of $\left\{c_{t}^{*}\right\}$ and $\left\{c_{t}\right\}$ are feasible, D^{*} is rewritten as

$$
D^{*}=\sum_{t=0}^{\infty} \beta^{t} u^{\prime}\left(c_{t}^{*}\right)\left[\left(1+r_{t}\right)\left(a_{t}^{*}-a_{t}\right)-\left(a_{t+1}^{*}-a_{t+1}\right)\right]
$$

- Using the Euler equation (10), this is further reduced to

$$
D^{*}=-\lim _{T \rightarrow \infty} \beta^{T} u^{\prime}\left(c_{T}^{*}\right)\left(a_{T+1}^{*}-a_{T+1}\right) .
$$

- By its definition, $\left\{c_{t}^{*}, a_{t+1}^{*}\right\}$ satisfies the TVC, which implies that

$$
D^{*}=\lim _{T \rightarrow \infty} \beta^{T} u^{\prime}\left(c_{T}^{*}\right) a_{T+1}
$$

Proof of Theorem 1

- Using the Euler equation, we obtain

$$
\beta^{T} u^{\prime}\left(c_{T}^{*}\right)=u^{\prime}\left(c_{0}^{*}\right) \frac{1}{\prod_{j=1}^{T}\left(1+r_{j}\right)}
$$

- Using the above equation, D^{*} is finally given by

$$
D^{*}=u^{\prime}\left(c_{0}^{*}\right) \times \lim _{T \rightarrow \infty} \frac{a_{T+1}}{\prod_{j=1}^{T}\left(1+r_{j}\right)} .
$$

- Since the sequence $\left\{a_{t+1}\right\}$ is feasible, it satisfies the NPG. This shows that $D^{*} \geq 0$.

Relationship btw NPG and TVC

Using the Euler equation, we can rewrite the TVC as follows:

$$
\lim _{T \rightarrow \infty} \frac{a_{T+1}^{*}}{\prod_{j=1}^{T}\left(1+r_{j}\right)}=0 .
$$

- NPG is the constraint, which prohibits the household to leave a debt in a present value sense.
- TVC is the condition for maximization, which ensures the binding of the NPG.

How to derive the conditions

Lagrangian Approach

Cookbook Procedure

1. Construct the Lagrangian:

$$
L=\sum_{t=0}^{\infty} \beta^{t}\left[u\left(c_{t}\right)+\lambda_{t}\left(\left(1+r_{t}\right) a_{t}+w_{t}-c_{t}-a_{t+1}\right)\right]
$$

where λ_{t} is the Lagrangian multiplier in period t.
2. Derive the first-order (necessary) conditions wrt c_{t} and a_{t+1} :

$$
\begin{align*}
c_{t}: & u^{\prime}\left(c_{t}\right)-\lambda_{t}=0 \quad t=0,1,2, \ldots \tag{12}\\
a_{t+1}: & -\lambda_{t}+\beta \lambda_{t+1}\left(1+r_{t+1}\right)=0 \quad t=0,1,2, \ldots \tag{13}
\end{align*}
$$

\rightarrow From (12) and (13) we can obtain the Euler equation. We have already shown that this is also sufficient.
3. Derive the TVC as the equality holding condition of the NPG.

Recursive Approach using Dynamic Programming

We can derive the UMP conditions by using the "recursive feature" of the problem.

Suppose that the household reconsiders the following problem in period t_{0} :

$$
\begin{aligned}
\max _{\left\{c_{t}, a_{t+1}\right\}_{t=t_{0}}^{\infty}} & \sum_{t=t_{0}}^{\infty} \beta^{t-t_{0}} u\left(c_{t}\right) \\
\text { s.t. } & \left\{c_{t}, a_{t+1}\right\}_{t=t_{0}}^{\infty} \text { is feasible }
\end{aligned}
$$

The initial value of assets is now given by $a_{t_{0}}^{*}$.
Theorem 2
Let $\left\{c_{t}^{* *}, a_{t+1}^{* *}\right\}_{t=t_{0}}^{\infty}$ denote the utility-maximizing pair of sequences which solves the above problem. Then, $c_{t}^{* *}=c_{t}^{*}$ and $a_{t+1}^{* *}=a_{t+1}^{*}$ for all $t \geq t_{0}$.

Proof.
Omitted

Value Function and Bellman Equation

Define the following function:

$$
V_{t}\left(a_{t}\right)=\max _{\left\{c_{\tau}, a_{\tau+1}\right\}_{\tau=t}^{\infty}}\left\{\sum_{\tau=t}^{\infty} \beta^{\tau-t} u\left(c_{\tau}\right) \mid\left\{c_{\tau}, a_{\tau+1}\right\}_{\tau=t}^{\infty} \text { is feasible }\right\}
$$

$\rightarrow V_{t}$ is called the value function.

We can convert the original problem to the two-period problem:

$$
\begin{equation*}
V_{t}\left(a_{t}\right)=\max _{c, a^{\prime}}\left\{u(c)+\beta V_{t+1}\left(a^{\prime}\right) \mid\left(c, a^{\prime}\right) \in \Omega_{t}\left(a_{t}\right)\right\} \tag{14}
\end{equation*}
$$

(14) is called the Bellman equation.

Roughly speaking,
Recursive approach $=$ Obtain $\left\{c_{t}^{*}, a_{t+1}^{*}\right\}$ by solving the Bellman equation (14), instead of solving the original problem.

Recursive Approach

Assume that $V_{t}\left(a_{t}\right)$ is differentiable.
Cookbook Procedure

1. Derive the F.O.C: $a_{t+1}=\left(1+r_{t}\right) a_{t}+w_{t}-c_{t}$ and

$$
\begin{equation*}
u^{\prime}\left(c_{t}\right)=\beta V_{t+1}^{\prime}\left(a_{t+1}\right) . \tag{15}
\end{equation*}
$$

$\Rightarrow c_{t}$ is implicitly obtained. We let this denote $\phi_{t}\left(a_{t}\right)$.
$\Rightarrow a_{t+1}=\psi_{t}\left(a_{t}\right) \equiv\left(1+r_{t}\right) a_{t}+w_{t}-\phi_{t}\left(a_{t}\right)$
2. Bellman equation must satisfy

$$
V_{t}\left(a_{t}\right)=u\left(\phi_{t}\left(a_{t}\right)\right)+\beta V_{t+1}\left[\psi_{t}\left(a_{t}\right)\right]
$$

3. Using the envelope theorem,

$$
\begin{equation*}
V_{t}^{\prime}\left(a_{t}\right)=\beta V_{t+1}^{\prime}\left(a_{t+1}\right)\left(1+r_{t}\right) . \tag{16}
\end{equation*}
$$

From (15) and (16) we obtain the Euler equation.

General problem

Terminology

- State variables: already given at the beginning of each period (e.g., assets)
- Control variables: immediately under the control (e.g., consumption)
- Let x_{t} and u_{t} respectively denote state and control variables.
- Transition equation:

$$
x_{t+1}=g_{t}\left(x_{t}, u_{t}\right) .
$$

Assume that g is differentiable wrt x_{t} and u_{t}.

Terminlogy

- One-period return function: $F_{t}\left(x_{t}, u_{t}\right)$.
- Assume that F is differentiable wrt x_{t} and u_{t}.
- In Economics, F is often specified as

$$
F_{t}\left(x_{t}, u_{t}\right)=\left(\prod_{j=1}^{t} \beta_{j}\right) f_{t}\left(x_{t}, u_{t}\right)
$$

with $\beta_{j} \in(0,1)$ and $\prod_{j=1}^{0} \beta_{j}$ is assigned to 1 .

- Terminal constraint:

$$
\lim _{T \rightarrow \infty} b_{T} x_{T} \geq \bar{x}
$$

where b_{T} is a variable such that $\lim _{T \rightarrow \infty} b_{T}<\infty$ and \bar{x} is a constant.

General Problem

Infinite-horizon maximization problem:

$$
\begin{aligned}
\max _{\left\{u_{t}, x_{t+1}\right\}} & \sum_{t=0}^{\infty}\left(\prod_{j=1}^{t} \beta_{j}\right) f_{t}\left(x_{t}, u_{t}\right) \\
\text { s.t } & x_{t+1}=g_{t}\left(x_{t}, u_{t}\right) \quad t=0,1,2, \ldots \\
& \lim _{T \rightarrow \infty} b_{T} x_{T} \geq \bar{x}
\end{aligned}
$$

Euler equation:

$$
\frac{f_{u, t}}{g_{u, t}}+\beta_{t+1}\left(f_{x, t+1}+\frac{f_{u, t+1}}{g_{u, t+1}} g_{x, t+1}\right)=0,
$$

where $f_{u, t}=\partial f\left(x_{t}, u_{t}\right) / \partial u_{t}$, and the same rule applies to the other expressions ($g_{u, t}, f_{x, t}$ and $g_{x, t}$).

Other application: A firm's dynamic decision making for investment

A firm's present value maximization

Setup:

- Consider a firm, of which production function is

$$
Y_{t}=F\left(K_{t}, L_{t}\right)
$$

- Y_{t} : output; K_{t} : capital; and L_{t} : labor.
- F satisfies the same properties as the slides in Jun. 15.
- Now, suppose that the firm does not rent capital, but invest by itself.
- I_{t} : investment.
- $K_{t+1}=I_{t}+(1-\delta) K_{t}, \quad \delta \in(0,1)$.
- Net cash flow (NCF) in period t :

$$
\pi_{t}=\underbrace{\underbrace{Y_{t}-w_{t} L_{t}}_{\text {gross profit }}-I_{t}}_{\mathrm{NCF}}
$$

A firm's present value maximization

A firm's problem:

$$
\begin{aligned}
\max _{\left\{L_{t}, I_{t}, K_{t+1}\right\}} & \sum_{t=0}^{\infty}\left(\frac{1}{\prod_{j=1}^{t}\left(1+r_{j}\right)}\right)\left(F\left(K_{t}, L_{t}\right)-w_{t} L_{t}-I_{t}\right) \\
\text { s.t. } & K_{t+1}=I_{t}+(1-\delta) K_{t} \quad t=0,1,2, \ldots \\
& \lim _{T \rightarrow \infty} \frac{K_{T+1}}{\prod_{j=1}^{T}\left(1+r_{j}\right)} \geq 0 .
\end{aligned}
$$

where $\prod_{j=1}^{0}\left(1+r_{j}\right)$ is assigned to 1 .
$(*)$ Objective function $=$ Infinite sum of present value of NCF

Quiz
Derive the conditions of this firm's present value maximization problem.

