Problem 4.1

Consider the NAND2-tree in Fig.1.

- A) Using the cell library shown in Fig.2 (next page: note that NOR2 gate is added), give an area optimal technology mapping. Also show the intermediate covering results on the subtrees rooted at each node.
 - For simplicity, you don't have to consider the "powered" cells, since area optimal covering will always use the smaller "unpowered" cells only.
- B) For the same problem, give a delay optimal technology mapping with the same cell library.
 - Assume that a load of 2 to 6 is connected to the output of the root (node 11) and derive the mapping solutions for each of the load value.
 - For each different mapping solutions derived, compute the slack times at each mapped cell, and apply area recovery if possible.

Fig.1 Target NAND2-tree

				output
cell name	area	gate	•	transition
		load	delay	coef
INV	2	3	12	4
INVP	3	6	12	2
NAND2	3	3	25	6
NAND2P	5	6	25	6 3
NAND3	4	2	40	8
NAND3P	7	4	40	4
NAND4	5	2	60	8
NAND4P	9	4	60	4
AOI21	4	3	60	8
AOI21P	7	6	60	4
NOR2	3	3	25	6
NOR2P	5	6	25	6 3
	INVP NAND2 NAND2P NAND3 NAND3P NAND4 NAND4P AOI21 AOI21P NOR2	INV 2 INVP 3 NAND2 3 NAND2P 5 NAND3P 7 NAND3P 7 NAND4 5 NAND4P 9 AOI21 4 AOI21P 7 NOR2 3	INV 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	INV 2 3 12 INVP 3 6 12 NAND2 3 3 25 NAND2P 5 6 25 NAND3P 7 4 40 NAND3P 7 4 40 NAND4P 9 4 60 AOI21P 7 6 60 NOR2 3 3 3 25

Fig.2 : Cell library. Assume that all input pins have the same load and switch delay for each cell in this library

Problem 4.2

Consider the fan-out network in Fig.3.

- An inverter with cell switching delay $S_r = 12$ and output transition coefficient $T_r = 4$ is driving the 8 loads whose required times are indicated by R_i and input gate loads indicated by L_i (i = 0, 1, ..., 7).
- A) Construct a fan-out tree by Two-Level Tree algorithm using the buffer cell b_1 shown in Fig.4.
- B) Construct a fan-out tree by Combinational Merging algorithm using the buffer cell b_1 and b_2 shown in Fig.4.

Fig.3 Fan-out network

$$b_1$$
 $L_{b1} = 2$: input gate load
 $S_{b1} = 42$: cell switching delay
 $T_{b1} = 4$: output transition coefficient
 b_2 $L_{b2} = 3$: input gate load
 $S_{b2} = 48$: cell switching delay
 $T_{b2} = 2$: output transition coefficient

Fig.4 Buffer cell b_1 and cell b_2