Problem 4.1

Consider the NAND2-tree in Fig. 1.
A) Using the cell library shown in Fig. 2 (next page : note that NOR2 gate is added), give an area optimal technology mapping. Also show the intermediate covering results on the subtrees rooted at each node.

- For simplicity, you don' t have to consider the "powered" cells, since area optimal covering will always use the smaller "unpowered" cells only.
B) For the same problem, give a delay optimal technology mapping with the same cell library.
- Assume that a load of 2 to 6 is connected to the output of the root (node 11) and derive the mapping solutions for each of the load value.
- For each different mapping solutions derived, compute the slack times at each mapped cell, and apply area recovery if possible.

Fig. 1 Target NAND2-tree

symbol	cell name	area	gate load	switching delay	output transition coef
-	INV	2	3	12	4
	INVP	3	6	12	2
	NAND2	3	3	25	6
	NAND2P	5	6	25	3
	NAND3	4	2	40	8
	NAND3P	7	4	40	4
$\equiv D_{-}$	NAND4	5	2	60	8
	NAND4P	9	4	60	4
	AOI21	4	3	60	8
	AOI21P	7	6	60	4
$\sum 0$	NOR2	3	3	25	6
	NOR2P	5	6	25	3

Fig. 2 : Cell library. Assume that all input pins have the same load and switch delay for each cell in this library

Problem 4.2

Consider the fan-out network in Fig. 3.

- An inverter with cell switching delay $S_{r}=12$ and output transition coefficient $T_{r}=4$ is driving the 8 loads whose required times are indicated by R_{i} and input gate loads indicated by $L_{i}(i=0,1, \ldots, 7)$.
A) Construct a fan-out tree by Two-Level Tree algorithm using the buffer cell b_{1} shown in Fig.4.
B) Construct a fan-out tree by Combinational Merging algorithm using the buffer cell b_{1} and b_{2} shown in Fig. 4 .

Fig. 3 Fan-out network

Fig. 4 Buffer cell b_{1} and cell b_{2}

