
VLSI System Design
Part III : Technology Mapping (1)

Lecturer : Tsuyoshi Isshiki

Dept. Communications and Computer Engineering,
Tokyo Institute of Technology

isshiki@vlsi.ce.titech.ac.jp

Logic Synthesis Flow

Boolean Network

Technology-Dependent
Gate-level Netlist

Logic Optimization

Technology Mapping

l  Minimize # of literals

l  Speed
l  Area
l  Power

Technology-Dependent
Standard-Cell Library

RTL Description(Verilog, VHDL)

Technology Mapping and
Circuit Cell Library

1.  Technology Mapping transforms the Boolean Network into
netlist composed of predefined circuit cells (mask layout for
the cells provided).

2.  Circuit cell types
a.  Functionality

l  Primitive cells：INV, AND, OR, NAND, NOR
l  Compound cells：XOR, AND-OR, MUX, TBUF
l  Storage cells：LATCH, FF

 - Options : Positive/negative clock, asynchronous/
synchronous set & reset, clock enable

b.  Drive Power

INV Cell (Schematic / Layout)

Power :×1 Power :×2 Power :×4

A Y Y A
Y A

Size : 3.0 x 16.5 um
Load :
 A : 0.025pF
Internal delay :
 A=>Y(rise) : 0.042 ns
 A=>Y(fall) : 0.039 ns
Output transition delay :
 Y(rise) : 1.534 ns/pF
 Y(fall) : 0.715 ns/pF

Size : 7.5 x 16.5 um
Load :
 A : 0.050pF
Internal delay :
 A=>Y(rise) : 0.035 ns
 A=>Y(fall) : 0.033 ns
Output transition delay :
 Y(rise) : 0.754 ns/pF
 Y(fall) : 0.355 ns/pF

Size : 13.5 x 16.5 um
Load :
 A : 0.100pF
Internal delay :
 A=>Y(rise) : 0.035 ns
 A=>Y(fall) : 0.034 ns
Output transition delay :
 Y(rise) : 0.374 ns/pF
 Y(fall) : 0.176 ns/pF

INV Cell (Schematic / Layout)

Power :×1 Power :×2 Power :×4

A Y Y A
Y A

NAND2 Cell (Schematic / Layout)

Power :×1 Power :×2 Power :×4

Y A
Y A A

B

Y

B
B

Size : 4.5 x 16.5 um
Load :
 A : 0.025pF
 B : 0.024pF
Internal delay :
 A=>Y(rise) : 0.055 ns
 A=>Y(fall) : 0.051 ns
 B=>Y(rise) : 0.073 ns
 B=>Y(fall) : 0.060 ns
Output transition delay :
 Y(rise) : 1.532 ns/pF
 Y(fall) : 1.153 ns/pF

Size : 7.5 x 16.5 um
Load :
 A : 0.050pF
 B : 0.050pF
Internal delay :
 A=>Y(rise) : 0.048 ns
 A=>Y(fall) : 0.050 ns
 B=>Y(rise) : 0.068 ns
 B=>Y(fall) : 0.058 ns
Output transition delay :
 Y(rise) : 0.755 ns/pF
 Y(fall) : 0.577 ns/pF

Size : 13.5 x 16.5 um
Load :
 A : 0.017pF
 B : 0.017pF
Internal delay :
 A=>Y(rise) : 0.299 ns
 A=>Y(fall) : 0.325 ns
 B=>Y(rise) : 0.327 ns
 B=>Y(fall) : 0.340 ns
Output transition delay :
 Y(rise) : 0.373 ns/pF
 Y(fall) : 0.205 ns/pF

NAND2 Cell (Schematic / Layout)

Power :×1 Power :×2 Power :×4

Y A
Y A A

B

Y

B
B

Cell Library Example

INV

NAND2

NAND3

NAND4

AOI21

AOI22

2

3

4

5

4

5

Cell name cost symbol Cell name cost symbol

Area Optimal Technology Mapping Flow

1.  Transform the optimized Boolean Network into NAND network
2.  Decompose NAND network into trees

•  Fan-out : # of destination pins for output pin of a node
•  Tree : DAG (directed acyclic graph) where all nodes have a fan-

out of 1
 à Fast algorithms exist for solving the Optimal Tree Covering
Problem

3.  Transform each NAND-tree into NAND2-tree
l  Balanced NAND2 decomposition

4.  For each NAND2-tree, obtain the optimal tree covering in
terms of circuit area by dynamic programming

Transformation of Boolean Network
to NAND Network

•  At each node of Boolean Network, covert
the sum-of-product form into NAND-NAND
form

 F = abc + de + fg
 = (abc) + (de) + (fg)
 = (abc)(de)(fg)

DAG-to-Tree Decomposition
•  If the gate output has a fan-out of more than

1, disconnect all pins from the arc (net).

“Forest of Trees”	

NAND2 Decomposition
(NAND2-Tree)

•  For each NAND gate on the NAND-tree, decompose into
NAND2 gates

•  If there are multiple decomposition solutions, choose the tree
with the smallest height （balanced tree decomposition）	

Cell Patterns

If there are multiple
NAND2-tree patterns,
enumerate all patterns

•  For each cell in the library, enumerate all functionally
equivalent NAND2-trees and register them as cell
patterns.

AOI22

NAND4

Cell Library Example
INV

NAND2

NAND3

NAND4

AOI21

AOI22

2

3

4

5

4

5

Cell name cost symbol Primitive DAG（NAND2+INV representation）	

Technology Mapping as
Tree Covering Problem (1)

l  Cover the NAND2-tree with registered cell patterns　
with the minimum cost (circuit area, speed, etc.)

l  Each node must be covered by exactly one pattern

1

2

3

4

5 6

7 8
9

10

NAND2 (area : 3)

Technology mapping result

INV (area : 2)
Area = 3 + 3 + 3 + 2 + 4 + 4
 = 19

NAND3 (area : 4)

Technology Mapping as
Tree Covering Problem (2)

l  Cover the NAND2-tree with registered cell patterns　
with the minimum cost (circuit area, speed, etc.)

l  Each node must be covered by exactly one pattern

NAND3 (area : 4)

NAND2 (area : 3)

Technology mapping result
Area = 3 + 3 + 4 + 4 + 3
 = 17

AOI21 (area : 4) 1

2

3

4

5 6

7 8
9

10

Tree Covering Approach (1)
•  Definition of tree graph :

–  Each node consist of several child nodes and a parent node.
–  A root is a node with no parent node. (only one root in a tree)
–  A leaf is a node with no child nodes.

•  Divide the covering problem on tree T into smaller covering problems
on the subtrees of T.

–  Recursively solve the covering problem on the subtrees rooted at
each node of T and store the optimal covering cost at each node.

–  Start from the leaf nodes and continue towards the root
–  Here, assume that the covering cost is circuit area

Target NAND2-tree

1

2
4

7

3
5

6

8
9

10

1

2
4

7

3
5

6

8
9

10

Tree Covering Example (1)
•  C (pj) : cost of cell pattern pj
•  Copt(i) : optimal covering cost of the subtree rooted at node i
•  Cmap(i ,pj) : optimal covering cost of the subtree rooted at node

i when pj is used to cover i
 à Copt(i) = MIN{Cmap(i, pj)}

1

C(NAND2) = 3
Cmap(1, NAND2) = C(NAND2) = 3
Copt(1) = Cmap(1, NAND2) = 3

Cmap(2, NAND2) = C(NAND2) = 3
Copt(2) = Cmap(2, NAND2) = 3

1

2
3 Cmap(3, NAND2) = Copt(1) + Copt(2) + C(NAND2) = 9

Copt(2) = Cmap(2, NAND2) = 3

Copt(2) = 3

Copt(1) = 3

C(NAND2) = 3

C(NAND2) = 3

2

1

2
4

7

3
5

6

8
9

10

Tree Covering Example (2)
4 Cmap(4, INV) = C(INV) = 2

Copt(4) = Cmap(4, INV) = 2

1

2

4

3
5 Cmap(5, NAND2) = Copt(3) + Copt(4) + C(NAND2) = 14

Copt(5) = Cmap(5, NAND2) = 14

1

2
4

3
5 6

1

2
4

3
5 6

Cmap(6, INV) = Copt(5) + C(INV) = 16
Cmap(6, AOI21) = Copt(1) + Copt(2) + C(AOI21) = 10
Copt(6) = Cmap(6, AOI21) = 10

Copt(3) = 9

Copt(4) = 2

Copt(5) = 14 Copt(1) = 3

Copt(2) = 3

C(NAND2) = 3

C(INV) = 2

C(INV) = 2
C(AOI21) = 4

1

2
4

7

3
5

6

8
9

10

Tree Covering Example (3)

7
8

Cmap(7, INV) = Copt(7) + C(INV) = 5
Copt(8) = Cmap(8, INV) = 5

Cmap(9, NAND2) = Copt(8) + C(NAND2) = 8
Cmap(9, NAND3) = C(NAND3) = 4
Copt(9) = Cmap(9, NAND3) = 4

7
8

9 7
8

9

7 Cmap(7, NAND2) = C(NAND2) = 3
Copt(7) = Cmap(7, NAND2) = 3

Copt(7) = 3

Copt(8) = 5

C(NAND2) = 3

C(INV) = 2

C(NAND2) = 3
C(NAND3) = 4

Tree Covering Example (4)

Cmap(10, NAND2) = Copt(6) + Copt(9) + C(NAND2) = 17
Cmap(10, NAND3) = Copt(3) + Copt(4) + Copt(9) + C(NAND3) = 19
Copt(10) = Cmap(10, NAND2) = 17

Copt(6) = 10

C(NAND2) = 3

Copt(9) = 4

Copt(4) = 2

Optimal tree cover à

1

2
4

7

3
5

6

8
9

10

1

2
4

7

3
5

6

8
9

10

Copt(9) = 4

Copt(3) = 9
C(NAND3) = 4

1

2
4

7

3
5

6

8
9

10

Principle of Optimality for
Area-Optimal Tree Covering

l  Area-optimal covering cost using pattern pi can be derived from
the optimal covering costs of the subtrees whose roots are
connected to the leaves of pi.

l  Area-optimal covering on the subtrees rooted at each node
needs to be calculated only once and stored.
 à Dynamic Programming : Deriving the solution to a problem
from a set of solutions on its subproblems.

p1

A B

R

Cmap(R, p1) = Copt(A) + Copt(B) + C(p1)

TA

p2

A
R

TA

Cmap(R, p2) = Copt(A) + Copt(G) + Copt(H) + C(p2)

G H

Copt(R) = MIN{Cmap(R, p1) + Cmap(R, p2)}

Problems Arising in
DAG Decomposition (1)

1.  Gates such as multiplexer and EXOR cannot be
expressed in NAND2-trees

Ø  Instead of decomposing the network into trees,
decompose into Leaf-DAG

-  Leaf-DAG：primary inputs are allowed to have multiple
fan-outs.

-  Tree-covering algorithm can still be applied to Leaf-
DAG

0
1

Leaf-DAG Decomposition
•  If the gate output has a fan-out of more than

1, disconnect only the output pin from the
net. (in tree decomposition, all pins were
disconnected)

Problems Arising in
DAG Decomposition (2)

2.  The solution space for the overall objective of “DAG
covering” is restricted by decomposing the target DAG into a
tree or a leaf-DAG. Therefore opportunity for deriving the
optimal DAG covering can be lost with the decomposition.

3.  Single-cone decomposition : At each primary output, exact a
“cone” which includes all paths to the primary inputs.

Tree decomposition :
Optimal covering cost = 11

Single-cone decomposition :
Optimal covering cost = 8

duplicated nodes

