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Multi-Level Logic Optimization (1) 

•  Limitation of two-level logic： When describing the logic circuit 
in two-level logic, even in its optimized form, the number of 
cubes can grow exponentially to the number of variables (such 
as arithmetic circuits).  

•  Multi-level logic optimization is done by iteratively modifying 
the structure. Objective functions can be area (circuit size), 
speed, and/or power consumption. 

•  Boolean Network : Directed acyclic graph G(V, E) to represent 
multi-level logic 
–  Each node represents a two-level logic. 
–  Each arc represents logic variables.  

F = abG + eH 

G = c + de H = a + bc 

c d e a b 



Multi-Level Logic Optimization (2) 

•  Operations of logic structure modification 
–  Decomposition : decompose a function (node) described in 

sum-of-product form into multiple smaller functions by factoring 
•  Ex :  F = a ⋅ b + b ⋅ c + a ⋅ c → G = a + b, F’ = c ⋅ G + a ⋅ b 

–  Extraction : decompose multiple functions with common 
subfunctions 

•  Ex :  F = a ⋅ b + b ⋅ c + a ⋅ c, G = a ⋅ d + b ⋅ d + a ⋅ c,  
  → H = a + b, F’ = c ⋅ H + a ⋅ b, G’ = d ⋅ H + a ⋅ c 

–  Collapsing : merge multiple functions into a single function by 
expanding into sum-of-product form  

•  Ex :  G = a + b, F’ = c ⋅ G + a ⋅ b → F’’ = a ⋅ b + b ⋅ c + a ⋅ c 



Multi-Level Logic Optimization (3) 

•  Circuit size and number of literals 
–  Any logic circuit can be implemented using only 2-input 

NAND gates (NAND2 gates) and inverters (INV gates).  
–  Let L(f) be the number of literals for node f. The number of 

NAND2 gates required to implement f is L(f) – 1. Note that 
this is independent of the actual functionality. 

–  The number of NAND2 gates to implement N nodes fi (i = 
1, 2, …, N) is ∑ i L( fi) – N . 

Ø  The term “gate count” usually refers to the number of 
NAND2 gates in the circuit implemented only with NAND2 
gates and INV gates. This is easily calculated by counting 
the number of literals and the number of nodes in the 
Boolean network. 



Boolean Division 
•  Given two nodes f and g, decomposition f = g ⋅ q + r (q ≠φ) is 

referred to as Boolean division. If there exists q such that r = 
φ, g is the Boolean factor of f, otherwise g is the Boolean 
divisor of f. 

•  Optimization methods using Boolean division:  
–  Factorization : For node f, compute g, q and r such that f = 

g ⋅ q + r and the total number of literals included in g, q and 
r is minimized. Repeat this operation on the newly added 
nodes (g, q and r) recursively.  

–  Extraction : For nodes f0 and f1, compute the common 
Boolean divisor g and decompose these nodes to f0 = g ⋅ q0 
+ r0 and f1 = g ⋅ q1 + r1 . 

•  Complications in Boolean division :  
–  Given f and g, decomposition f = g ⋅ q + r can have multiple 

solutions for q and r. Therefore, merely computing the 
optimal divisor g can become too complicated. 



Algebraic Division (1) 
•  The support for g, denoted as sup(g) is defined as a set of variables 

which appear in g (either complemented or non-complemented). On 
functions g and q, if the two do not contain any common variables, g 
and q is said to be orthogonal and written as g ⊥ q or sup(g) ∩ sup(q) = 
φ. 

•  Given f and g, if there exists q ≠ φ such that  f = g ⋅ q + r and g ⊥ q, 
then g is the algebraic divisor of  f. Furthermore, if g is not the 
algebraic divisor of r (q’ ≠ φ which satisfies r = g ⋅ q’ + r’ does not 
exist), q is the algebraic quotient and written as q = f / g. In this case, 
r is the algebraic remainder (satisfies r / g = φ).  

•  On algebraic division f = g ⋅ q + r, if r = φ, then g is said to evenly 
divide  f. Here, g and q are both the algebraic factors of f. 

•  Algebraic division is a restricted form of Boolean division where the 
division solution becomes unique (can assume that variables are not 
Boolean but merely algebraic) 



Algebraic Division (2) 
•  Changes in gate counts by algebraic division f = g ⋅ q + r 

–  On node f, let L( f ) be # of literals and C( f ) be # of cubes.  
–  # of literals in the original node f (obtained by collapsing the right side 

expression) is calculated as L( f ) = L(g) ⋅ C(q) + C(g) ⋅ L(q) + L(r) (When 
collapsing the term (g ⋅ q), each literal in g is duplicated C(q) times and 
each literal in q is duplicated C(g) times). Here, # of gates required is 
L( f ) – 1. 

–  The 3 new nodes g, q and r includes a total of L(g) + L(q) + L(r) literals. 
These 3 nodes consumes a total of L(g) + L(q) + L(r) – 3 gates. 

–  After the decomposition, f is expressed with 3 literals g, q and r (this 
consumes 2 gates). This results in a total of L(g) + L(q) + L(r) – 1 gates 
after the decomposition. 

–  Thus, L(g) (C(q) – 1) + L(q) (C(g) – 1) gates are saved by this 
decomposition. 

•  By applying the algebraic division on the two functions with a 
common divisor f0= g ⋅ q0+ r0, f1= g ⋅ q1+ r1 :  

–  L(g) (C(q0) + C(q1) – 1) + (L(q0) + L(q1) ) (C(g) – 1) – 1 gates are saved. 



Algebraic Functions and Sets 
•  In algebraic division, expressions are treated as algebraic 

functions. 
•  Algebraic functions and class calculus (set theory) 

–  Variables do not represent a set, but merely an element for the 
cube set. Complemented and non-complemented variables are 
treated as separate names. 

–  A cube is a set of literals. 
–  A cover (sum-of-product) is a set of cubes.  
–  Examples: 

f = ab + bc = {ab, bc}, g = b = {b}, h = ab = {ab} 
f ⊆ h , but f ⊆ g , f ⊆ g  
(in Boolean space : f ⊆ h , f ⊆ g , h ⊆ g) 
f ∩ g = φ , f ∩ h = ab  
(in Boolean space : f ∩ g = ab + bc, f ∩ h = ab+ abc = ab ) 



Multi-Level Logic Optimization 
With Algebraic Division 

•  Need efficient implementation of algebraic 
division computation method (given a divisor) 

•  Need methods for selecting good divisors 
–  Select divisors with large # of literals and cubes 

→ cubes, kernels 
–  Select divisors which are common among multiple 

functions. 
→ common cubes, nontrivial kernel intersections 



•  Calculate f / g by intersecting cube factors sets 
–  Describe the two given nodes f and g as sets of cubes: 

•  f = {a1, a2, …, a| f | }, g = {b1, b2, …, b| g | } 
–  For i = 1, 2, …, |g| , calculate a set of cube factors on bi with 

respect to each cube aj ∈ f : 
•   qi = {cij | cij = aj / bi ≠ φ, aj ∈ f , bi ∈ g }.  

–  f / g = q1 ∩ q2 ∩ … ∩ q| g | ． 
 （note: operator ∩ is set intersection, not a logical-AND） 

Ex : f = abc + abd + ce + bce + de, g = ab + e 
 f = {abc, abd, ce, bce, de}, g = {ab, e} 
 q0 = {c , d}, q1 = {c , bc, d}  
 f / g = q0 ∩ q1 = {c , d} 
 f = (ab + e) (c + d) + bce  

Algebraic Quotient Calculation (Method 1) 



Cube-Literal Matrix (1) 

•  Cube-literal matrix for algebraic division 
–  Assign cubes to rows and literals (both non-

complemented and complemented) to columns. 
–  If the cube on the ith row includes the literal on the jth 

column, set element (i, j) to 1, otherwise set to 0.  

a b b c d e 
abc 1 0 1 1 0 0 
abd 1 0 1 0 1 0 
bce 0 1 0 1 0 1 
de 0 0 0 0 1 1 

－	

－	

–  Bit vectors assigned to each 
cube can be seen as indices. 
•  ind(abc) = 101100 = 44 
•  ind(bce) = 010101 = 21 

–  The inverse of the index 
function can be defined also: 
•  ind–1(001111) = bcde 
•  ind–1(101000) = ab 

－	

Ex : f = abc + abd + bce + de －	



Cube-Literal Matrix (2) 

•  Propositions on cube-literal matrix 
1.  For cubes ci and cj, cj is an algebraic factor of ci if and only if 

 ind(ci) & ind(cj)  = ind(cj)  
 (‘&’ is a bitwise AND operator).  

2.  If cj is an algebraic factor of ci, then the index value for the 
evenly divided quotient ci / cj can be written as  

  ind(ci / cj) =  ind(ci) ^ ind(cj)  

 or  ci / cj = ind–1((ind(ci) ^ ind(cj )) 
 (‘^’ is a bitwise EXOR operator).  



Algebraic Quotient Calculation (Method 1’) 

•  Calculate f / g using cube-literal matrix 
 ak : cube on the kth row of the cube-literal matrix for f ; 
 bk : cube on the kth row of the cube-literal matrix for g ; 
 q = U (universal set) ;  
 FOR (i = 1 to |g|) { 
  q’ = φ ;  
  FOR (j = 1 to |f|) {  
   // if bi  is a factor of aj , add aj / bi to q’ 
    IF (ind(bi) & ind(aj) = ind(bi)) 

    q’ = q’ + {ind–1((ind(bi) ^ ind(aj))} ; 
   } 
  q = q ∩ q’ ; 

} 
	



Calculation of Algebraic Quotient (3) 

Ex : f = abc + abd + ce + bce + de, g = ab + e 
 f = {abc, abd, ce, bce, de}, g = {ab, e} 
 q0 = {c , d}, q1 = {c , bc, d}  
 f / g = q0 ∩ q1 = {c , d} 
 f = (ab + e) (c + d) + bce  

a b b c c d e
f : abc 1 0 1 1 0 0 0
f : abd 1 0 1 0 0 1 0
f : ce 0 0 0 1 0 0 1
f : bce 0 1 0 0 1 0 1
f : de 0 0 0 0 0 1 1
g : ab 1 0 1 0 0 0 0
q0 : c 0 0 0 1 0 0 0
q0 : d 0 0 0 0 0 1 0

a b b c c d e
f : abc 1 0 1 1 0 0 0
f : abd 1 0 1 0 0 1 0
f : ce 0 0 0 1 0 0 1
f : bce 0 1 0 0 1 0 1
f : de 0 0 0 0 0 1 1
g : e 0 0 0 0 0 0 1
q1 : c 0 0 0 1 0 0 0
q1 : bc 0 1 0 0 1 0 0
q1 : d 0 0 0 0 0 1 0



Cube-Literal Matrix (3) 

•  Propositions on cube-literal matrix 
3.  For cubes ci and cj, if ind(ci) < ind(cj), then cj cannot be the 

algebraic factor of ci.  
 (applies to any column order) 

4.  For cubes aj ∈ f , bi , bk ∈ g, let aj / bk ≠ φ and aj / bi ≠ φ. If 
ind(bk) > ind(bi), then aj / bi ∉ f / g. 
 (cube aj / bi is not included in the quotient f / g)  



Algebraic Quotient Calculation (Method 2) 

•  Calculate f / g by cube-literal matrix with pruning 
 Merge the two cube-literal matrices for f and g, and sort the rows in the 
increasing order of the cube indices. 
 ck : cube on the kth row ; 
 max = | f | + | g | ; k = max ; q = U (universal set);  
 REPEAT { 
  WHILE (ck ∈ f ) { // move ck to the last element of g in the list. 
   k = k – 1;  
   if (k = 0) return q ; // all elements are evaluated. 
  } 
  q’ = φ ; mark row k ;  
  FOR (j = k + 1 to max) { 
   IF (ind(ck) & ind(cj) = ind(ck)) {  
    q’ = q’ + {ind–1((ind(cj) ^ ind(ck ))} ;  
    mark row j ; 
   } 
  } 
  q = q ∩ q’ ; 
  IF (q = φ) return φ ; // f / g = φ  
  delete all marked rows ; 
  k = k – 1; max = max – (# of marked rows) ; 
 } 
	



Calculation of Algebraic Quotient (3) 

Ex : f = abc + abd + bcd + ace + abde, g = ab + bd + ae 
－	－	 －	

a b b c d e
g : bd 0 1 0 0 1 0
f : bcd 0 1 0 1 1 0
g : ae 1 0 0 0 0 1
f : ace 1 0 0 1 0 1
g : ab 1 0 1 0 0 0
f : abd 1 0 1 0 1 0
f : abc 1 0 1 1 0 0
f : abde 1 1 0 0 1 1

－	

－	
－	

－	

q’ = {c, bd}, q = {c} q’ = {c}, q = {c} －	

a b b c d e
g : bd 0 1 0 0 1 0
f : bcd 0 1 0 1 1 0
g : ae 1 0 0 0 0 1
f : ace 1 0 0 1 0 1
g : ab* 1 0 1 0 0 0
f : abd* 1 0 1 0 1 0
f : abc* 1 0 1 1 0 0
f : abde 1 1 0 0 1 1

－	

－	
－	

－	

q’ = {d, c}, q = {d, c} 
a b b c d e

g : bd 0 1 0 0 1 0
f : bcd 0 1 0 1 1 0
g : ae* 1 0 0 0 0 1
f : ace* 1 0 0 1 0 1
f : abde* 1 1 0 0 1 1

－	

－	
－	

－	

a b b c d e
g : bd* 0 1 0 0 1 0
f : bcd* 0 1 0 1 1 0

－	

－	
－	



Multi-Level Logic Optimization 
With Algebraic Division 

•  Need efficient implementation of algebraic 
division computation method (given a divisor) 

•  Need methods for selecting good divisors 
–  Select divisors with large # of literals and cubes 

→ cubes, kernels 
–  Select divisors which are common among 

multiple functions. 
→ common cubes, nontrivial kernel intersections 



Primary Divisor (1) 
•  Primary divisor : P( f ) = { f / c | c is a cube} 

 （a set of algebraic quotients when dividing  f  by an arbitrary 
cube) 
–  Ex: f = abc + ade → f / a = bc + de is a primary divisor. 

•  Theorem 3: If g is an algebraic divisor of f, 
then there exists p ∈ P( f ) such that g ⊆ p . 
–  In other words, the set of primary divisors of f 

contains all possible divisor of f . 
•  Collorary 3.1 : g ⊆ f / (f / g). 

–  Consider f = g ⋅ q + r = g ⋅  (f / g) + r. (r / g = φ)  
–  Let r = q ⋅ q’ + r’. (r’ / q = φ ) 
–  Then f = g ⋅ q + r = g ⋅ q + q ⋅ q’ + r’ = (g+ q’) ⋅ q + r’  
∴ f / (f / g) = f / q = g + q’ ⊆ g 



Primary Divisor (2) 

•  Collorary 3.2 : If g ⊆ g’, then f / g ⊆ f / g’. 
–  Let g = g’ + g’’. Then : 

  f = g ⋅ ( f / g ) + r = ( g’ + g’’ ) ⋅ ( f / g ) + r  
  = g’ ⋅ ( f / g ) + g’’ ⋅ ( f / g ) + r 

–  Let h = g’’ ⋅ ( f / g ) + r. By dividing h with g’, we get : 
  h = g’ ⋅ q’ + r’ where r’ / g’ = φ . Then : 
  f = g’ ⋅ ( f / g ) + g’ ⋅ q’ + r’ 

      = g’ ⋅ (( f / g ) + q’ ) + r’ 
–  Since r’ / g’ = φ , the algebraic quotient for  f divided by g’ is 

  f / g’ = ( f / g ) + q’  
∴ f / g ⊆  f / g’	



Primary Divisor (3) 
•  Theorem 3: If g is an algebraic divisor of f, then there 

exists p ∈ P( f ) such that g ⊆ p . 
•  Proof: For a cube c ∈ f / g , 

Ø Since {c} ⊆ f / g and by corollary 3.2 → f / (f / g) ⊆ f / c 
Ø By corollary 3.1 → g ⊆ f / (f / g) 

∴ g ⊆  f / (f / g) ⊆  f / c ∈ P( f ) 

•  Cube-free： f is said to be cube-free if there are no 
cubes which divide f evenly other than the universal 
cube “1”. 
 (a cube-free function obviously includes two or more 
cubes) 



Kernel (1) 
•  Kernel is a set of primary divisors which are cube-

free:  
   K( f ) = { k | k ∈ P( f ), k is cube-free} 

•  0-level kernel set K0( f ) is a set of kernel which do not 
contain other kernels. → Often, 0-level kernel set is 
used for divisor candidates. 

•  Ex: f = abc + abde + abeg. 
–  f / a = bc + bde + beg is a primary divisor of f but not a kernel 

since b is the algebraic factor of f / a. 
–  f / (ab) = c + de + eg is a kernel (there is no cube that can 

divide c + de + eg evenly). Here, ab is called the cokernel of 
the kernel f / (ab). 

–  f / (abe) = d + g is a 0-level kernel (its cokernel is abe).  
	



Kernel (2) 
•  Algebraic factorization on f = ac + ad + bc + bd + be :  

Ø Use literals as divisors 
f / a = c + d  → f = a (c + d) + bc + bd + be = a (c + d) + b (c + d + e)  
f / b = c + d + e → f = b (c + d + e) + ac + ad = b (c + d + e) + a (c + d)  
f / c = a + b  → f = c (a + b) + ad + bd + be = c (a + b) + d (a + b) + be  
f / d = a + b  → f = d (a + b) + ac + bc + be = d (a + b) + c (a + b) + be  
Ø Use kernels as divisors 
f / (c + d) = a + b → f = (c + d) (a + b) + be  
f / (c + d + e) = b → f = (c + d + e) b + ac + ad  

    = b (c + d + e) + a (c + d)  
f / (a + b) = c + d → f = (a + b) (c + d) + be  

•  In many case, by using kernels as divisors, more 
compact formulation can be derived with smaller 
number of steps. 



Computing the Kernels (1) 
•  Algebraic cube division on cube-literal matrix f / c (c is a cube) 

–  Disable all columns whose corresponding literals are included in 
c. 

–  Disable all rows having 0 in one of the disabled columns.  
–  The remaining sub-matrix, consisting of enabled columns and 

rows, is the quotient. This sub-matrix can be described by a pair 
of bit-vectors VR and VC indicating the enable/disable status of 
each row and column, without rewriting the entire matrix. 

Ex : f = abde + acde + bcde 
 

a b c d e 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

f / c = ade + bde f / ac = de f / cd = ae + be f / cde = a + b 

a b c d e 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

a b c d e 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

a b c d e 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1



Computing the Kernels (2) 
•  Basic flow of kernel computation : 

A)  Push the original (nontrivial) function to STACK.  
B)  Pop a function from the STACK, and divide this function by the 

largest cube factor (divides the function evenly) so that the 
quotient becomes cube-free. The resulting quotient is a kernel.  

C)  For each literal L in the original function, divide the obtained 
kernel by L. If the resulting quotient is nontrivial, push this 
quotient to STACK. 
Ø  Computation pruning strategy : When dividing the obtained kernel by 

each literal, skip the ones which have already been evaluated prior to 
being pushed onto STACK. (Put an attribute of the dividing literal to 
each function being push onto the STACK) 

D)  Go to B). 



Kernel Computation Algorithm 
STACK = φ; K = φ; 
Generate the cube-literal matrix M on given function f ;  
L = 0 ; W = (# of columns of M) ; 
PUSH [M, L] to STACK ; 
WHILE (STACK is non-empty) { 

 POP [M, L] from STACK; 
 IF (column i have 1’s on all enabled rows for some i ≤ L) 
  continue ; // skip further computation  
 make M cube-free; // disable columns having all 1’s 
 K = K + {M};    
 FOR (j = L + 1 to W) { 

   IF ((column j  is enabled) &&  
       (# of 1’s on enabled rows in column j)  > 1) { 
   disable all rows i in M where M(i, j) = 0; 

    disable column j in M ;  
   L = j + 1; 
   PUSH [M, L] to STACK ;  
  } 

  } 
 } 



Kernel Computation Example (1) 

f = abde + acde + bcde 
a b c d e 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

disable columns 
with all 1’s 

make cube-free 

K = {bc + ac + ab, b + c, a + c, a + b } 

M0 

M0 / de  

M0 / ade  M0 / bde  M0 / cde  

disable rows 
with 0’s on 
factored literal 

K0 = {b + c, a + c, a + b } 
CK0 = {ade, bde, cde } 

kernel set : 
0-level kernel set : 

0-level cokernel set : 

a b c d e 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

a b c d e 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

a b c d e 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

a b c d e 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

(not cube-free) 



－	

Kernel Computation Example (2.a) 

f = abc + abd + bce + ace + bde a b b c d e 
0 1 0 0 1 1
0 1 0 1 0 1
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 0 0

－	－	 －	

－	

M0 

－	

－	a b b c d e 
0 1 0 0 1 1
0 1 0 1 0 1
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 0 0

a b b c d e 
0 1 0 0 1 1
0 1 0 1 0 1
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 0 0

a b b c d e 
0 1 0 0 1 1
0 1 0 1 0 1
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 0 0

a b b c d e 
0 1 0 0 1 1
0 1 0 1 0 1
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 0 0

a b b c d e 
0 1 0 0 1 1
0 1 0 1 0 1
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 0 0

M0 / a M0 / b －	

M0 / ac M0 / ab M0 / be －	

(not cube-free) 

make cube-free 
－	



Kernel Computation Example (2.b) 

f = abc + abd + bce + ace + bde a b b c d e 
0 1 0 0 1 1
0 1 0 1 0 1
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 0 0

－	－	 －	

M0 

－	a b b c d e 
0 1 0 0 1 1
0 1 0 1 0 1
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 0 0

－	a b b c d e 
0 1 0 0 1 1
0 1 0 1 0 1
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 0 0

a b b c d e 
0 1 0 0 1 1
0 1 0 1 0 1
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 0 0

a b b c d e 
0 1 0 0 1 1
0 1 0 1 0 1
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 0 0

M0 / c M0 / d 

Skip further  
Processing 
(M0 / ab is 
already 
calculated) 

－	

－	
M0 / e 
－	

M0 / b 

M0 / ce 
K = {abc+abd+bce+ace+bde, ce+bd+bc, b+e, c+d, 
        c+d, be+ae+ab, a+b, be+ab, bd+bc+ac} 
K0 = {b+e, c+d, c+d, a+b, be+ab} 
CK0 = {ab, ac, be, ce, d} 

－	 －	
－	 －	－	 －	 －	

－	
a b b c d e 
0 1 0 0 1 1
0 1 0 1 0 1
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 0 0



Multi-Level Logic Optimization 
With Algebraic Division 

•  Need efficient implementation of algebraic 
division computation method (given a divisor) 

•  Need methods for selecting good divisors 
–  Select divisors with large # of literals and cubes 

→ cubes, kernels 
–  Select divisors which are common among 

multiple functions. 
→ common cubes, nontrivial kernel intersections 



Rectangles in Cube-Literal Matrix 
•  A rectangle (R, C) in the cube-literal matrix M is a subset of rows R and 

subset of columns C such that M(i, j) = 1 for all i ∈ R and j ∈ C.  
•  A corectangle (R, C’ ) is the same row subset R with the complement 

column subset of C (C’= C) .  
•  A containment of rectangles is defined as : 

  (R0, C0) ⊆ (R1, C1) implies R0 ⊆ R1 and C0 ⊆ C1.  
•  A prime rectangle is a rectangle not contained by other rectangles. On 

the cube-literal matrix : 
–  Prime rectangle represents a cokernel. 
–  Corectangle of a prime rectangle represents a kernel. 

    Ex : f = abde + acde + bcde 
	

－	

cokernel 
(prime rectangle) 

kernel  
(corectangle) 

a b c d e 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

f / de = bc + ac + ab f / ade = b + c f / bde = a + c f / cde = a + b 

a b c d e 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

a b c d e 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1

a b c d e 
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1



Common Cube Extraction  
by Rectangle Covering (1) 

•  Common cube extraction within multiple functions:  
–  Common cube is a common divisor among multiple 

functions in the form of a cube. 
–  Common cubes can be extracted by generating the cube-

literal matrix for the multiple functions, and extracting 
rectangles (R, C) on this matrix such that |R| ≥ 2 and |C| ≥ 2 . 

–  Maximal common cubes are the cubes which are not 
contained (in the algebraic sense) by other cubes. Such 
common cubes correspond to prime rectangles, and can be 
extracted by applying the same algorithm for computing the 
kernels on this matrix.  



Common Cube Extraction  
by Rectangle Covering (2) 

a b c d e f g
F 1 1 1 0 0 0 0
F 1 1 0 1 0 1 0
F 0 0 0 0 1 0 1
G 1 1 0 0 0 1 1
G 0 1 1 1 0 1 0
H 0 1 0 1 0 1 0
H 0 1 0 0 1 0 0

a b c d e f g
F 1 1 1 0 0 0 0
F 1 1 0 1 0 1 0
F 0 0 0 0 1 0 1
G 1 1 0 0 0 1 1
G 0 1 1 1 0 1 0
H 0 1 0 1 0 1 0
H 0 1 0 0 1 0 0

F = abc + abdf + eg, G = abfg + bcdf, H = bdf + be 

a b c d e f g
F 1 1 1 0 0 0 0
F 1 1 0 1 0 1 0
F 0 0 0 0 1 0 1
G 1 1 0 0 0 1 1
G 0 1 1 1 0 1 0
H 0 1 0 1 0 1 0
H 0 1 0 0 1 0 0

a b c d e f g
F 1 1 1 0 0 0 0
F 1 1 0 1 0 1 0
F 0 0 0 0 1 0 1
G 1 1 0 0 0 1 1
G 0 1 1 1 0 1 0
H 0 1 0 1 0 1 0
H 0 1 0 0 1 0 0



Cost Function of Rectangles on 
Cube-Literal Matrix 

•  Difference in total # of gates before and after the extraction 
Ø # of literals = # of 1s in matrix 
Ø # of gates = # of literals –  # of nodes 

a b c d e f g X FX 
X 1 1 0 0 0 0 0 0 0 
FX 0 0 1 0 0 0 0 0 0 
FX 0 0 0 1 0 1 0 0 0 
F 0 0 0 0 0 0 0 1 1 
F 0 0 0 0 1 0 1 0 0 
G 0 0 0 0 0 1 1 1 0 
G 0 1 1 1 0 0 0 0 0 
H 0 1 0 1 0 1 0 0 0 
H 0 1 0 0 1 0 0 0 0 

a b c d e f g
F 1 1 1 0 0 0 0
F 1 1 0 1 0 1 0
F 0 0 0 0 1 0 1
G 1 1 0 0 0 1 1
G 0 1 1 1 0 1 0
H 0 1 0 1 0 1 0
H 0 1 0 0 1 0 0

F = abc + abdf + eg 
G = abfg + bcdf 
H = bdf + be 

22 literals, 19 gates 
21 literals, 16 gates 

Divide by ab 

Cost(R, C) = 16 – 19 = – 3 

X = ab 
FX = c + df 
F = XFX + eg 
GX = fg 
G = XGX + bcdf 
H = bdf + be 



Breakdown of Cost Function (1) 
•  Step 1: extract cube C 

Ø Weight(R, C) = # of 1s in rectangle (R, C) 
ü  If all elements are 1, then Weight(R, C) = |R|•|C| 

Ø Overhead(R, C) = |R| + |C| 
ü  |R| : # of appearances of cube C 
ü  |C| : # of literals in cube C 

Ø Difference in # of literals = Overhead(R, C) – Weight(R, C)  
Ø  # of nodes added = 1 (to compute cube C). 

	
a b c d e f g X

X 1 1 0 0 0 0 0 0
F 0 0 1 0 0 0 0 1
F 0 0 0 1 0 1 0 1
F 0 0 0 0 1 0 1 0
G 0 0 0 0 0 1 1 1
G 0 1 1 1 0 1 0 0
H 0 1 0 1 0 1 0 0
H 0 1 0 0 1 0 0 0

a b c d e f g
F 1 1 1 0 0 0 0
F 1 1 0 1 0 1 0
F 0 0 0 0 1 0 1
G 1 1 0 0 0 1 1
G 0 1 1 1 0 1 0
H 0 1 0 1 0 1 0
H 0 1 0 0 1 0 0

F = abc + abdf + eg 
G = abfg + bcdf 
H = bdf + be 

X = ab 
F = Xc + Xdf + eg 
G = Xfg + bcdf 
H = bdf + be 

22 literals, 19 gates 21 literals, 17 gates 

extract ab 



Breakdown of Cost Function (2) 
•  Step 2 : divide by cube C 

Ø  If a node f contains 1 or more instances of C, then add a new node  fC = f / C 
(algebraic quotient of f divided by C) 

ü  Difference in # of literals : Merge(R, C) = 2 × |Q | – |R| 
Q = set of nodes containing one or more instances of cube C 

  |R| = (# of appearances of cube C in Q ) 
ü  # of nodes added : |Q| (# of new quotients f/C) 

X = ab 
FX = c + df 
F = XFX + eg 
GX = fg 
G = XGX + bcdf 
H = bdf + be 21 literals, 17 gates 

21 literals, 16 gates 

Divide by X 

X = ab 
F = Xc + Xdf + eg 
G = Xfg + bcdf 
H = bdf + be 

a b c d e f g X FX GX 
X 1 1 0 0 0 0 0 0 0 0 
FX 0 0 1 0 0 0 0 0 0 0 
FX 0 0 0 1 0 1 0 0 0 0 
F 0 0 0 0 0 0 0 1 1 0 
F 0 0 0 0 1 0 1 0 0 0 
GX 0 0 0 0 0 1 1 0 0 0 
G 0 0 0 0 0 0 0 1 0 1 
G 0 1 1 1 0 1 0 0 0 0 
H 0 1 0 1 0 1 0 0 0 0 
H 0 1 0 0 1 0 0 0 0 0 

a b c d e f g X
X 1 1 0 0 0 0 0 0
F 0 0 1 0 0 0 0 1
F 0 0 0 1 0 1 0 1
F 0 0 0 0 1 0 1 0
G 0 0 0 0 0 1 1 1
G 0 1 1 1 0 1 0 0
H 0 1 0 1 0 1 0 0
H 0 1 0 0 1 0 0 0

Q	

(|R| = 3) 



Breakdown of Cost Function (3) 

•  Changes in # of literals when divided by cube C 
Ø ΔLiteral(R, C) = Overhead(R, C) – Weight(R, C) + Merge(R, C)  

 = (|R| + |C|) – (# 1s in (R, C)) + (2 × |Q|– |R|)  
•  Total # of nodes added : ΔNode(R, C) = |Q| + 1 
•  Changes in # of gates when divided by cube C 

Ø ΔGate(R, C) = ΔLiteral(R, C) – ΔNode(R, C)  
 = (|R| + |C|) – (# 1s in (R, C)) + |Q|– |R| – 1 
 = |C| – (# 1s in (R, C)) + |Q| – 1 
 where Q = set of nodes containing one or more instances of cube C 

Ø Ex.  
 ΔGate({2, 5, 6}, {2, 4, 6}) = 3 + 3 – 9 – 1 = – 4  
 ΔGate({1, 2, 4}, {1, 2}) = 2 + 2 – 6 – 1 = – 3  

	

a b c d e f g 
F 1 1 1 0 0 0 0 
F 1 1 0 1 0 1 0 
F 0 0 0 0 1 0 1 
G 1 1 0 0 0 1 1 
G 0 1 1 1 0 1 0 
H 0 1 0 1 0 1 0 
H 0 1 0 0 1 0 0 



Overlapping of Rectangle Covers (1) 

•  The cube abdf included in F can be covered by cube ab and cube bdf :  
 abdf = ab ⋅ bdf  
 (unfortunately, this cannot be derived from algebraic division)  
 à “don’t-care” cubes 

•  Don’t-care cubes can be eliminated (does not contribute to literal count or 
gate count costs), but also can be used in algebraic division. 

	

X = ab 
FX = c + df 
F = XFX + eg 

X = ab 
Y = bdf 
FX = abc + aY 
F = XFX + eg 

F = abc + abdf + eg 
X = ab 
FX = abc + abdf 
F = XFX + eg 

CANNOT factor out bdf 

Don’t-care cubes 

CAN factor out bdf 
X = ab 
Y = bdf 
FX = c + Y 
F = XFX + eg 



Overlapping of Rectangle Covers (1) 

•  Overlapping of multiple rectangle covers 
Ø Instead of changing the 1s to 0s in the rectangle, change to “don’t-

care” (marked ‘ * ’ below). 
Ø Allow rectangles to cover “don’t-cares” as well as 1s. 

a b c d e f g
FX * * 1 0 0 0 0
FX * * 0 1 0 1 0
F 0 0 0 0 1 0 1
G * * 0 0 0 1 1
G 0 1 1 1 0 1 0
H 0 1 0 1 0 1 0
H 0 1 0 0 1 0 0

X = ab 
FX = c + df 
F = XFX + eg 
GX = fg 
G = XGX + bcdf 
H = bdf + be 

X = ab 
Y = bdf 
FX = c + Y 
F = XFX + eg 
GX = fg 
G = XGX + Yc 
H = Y + be # of 1s in (R, C) = 8 

ΔGate(R, C)  
= |C| + (# nodes containing C) – (# 1s in (R, C)) – 1  
= 3 + 3 – 8 – 1 = – 3  



Overlapping of Rectangle Covers (2) 

a b c d e f g
F 1 1 1 0 0 0 0
F 1 1 0 1 0 1 0
F 0 0 0 0 1 0 1
G 1 1 0 0 0 1 1
G 0 1 1 1 0 1 0
H 0 1 0 1 0 1 0
H 0 1 0 0 1 0 0

a b c d e f g
FX * * 1 0 0 0 0
FX * * 0 1 0 1 0
F 0 0 0 0 1 0 1
G * * 0 0 0 1 1
G 0 1 1 1 0 1 0
H 0 1 0 1 0 1 0
H 0 1 0 0 1 0 0

a b c d e f g
FX * * 1 0 0 0 0
FX * * 0 * 0 * 0
F 0 0 0 0 1 0 1
G * * 0 0 0 1 1
G 0 * 1 * 0 * 0
H 0 * 0 * 0 * 0
H 0 1 0 0 1 0 0

F = abc + abdf + eg 
G = abfg + bcdf 
H = bdf + be 

X = ab 
FX = c + df 
F = XFX + eg 
GX = fg 
G = XGX + bcdf 
H = bdf + be 

ΔG = -3  ΔG = -3  

X = ab 
Y = bdf 
FX = c + Y 
F = XFX + eg 
GX = fg 
G = XGX + Yc 
H = Y + be 



Multi-Level Logic Optimization 
With Algebraic Division 

•  Need efficient implementation of algebraic 
division computation method (given a divisor) 

•  Need methods for selecting good divisors 
–  Select divisors with large # of literals and cubes 

→ cubes, kernels 
–  Select divisors which are common among 

multiple functions. 
→ common cubes, nontrivial kernel intersections 



Kernel Intersection for Optimizing  
Multiple Functions (1) 

•  A nontrivial function is a function with two or more cubes which 
cannot be reduced to a single cube.  
–  f = abc + abd is nontrivial 
–  g = abc + ab is trivial because it reduces to a single cube ab. 
–  A cube-free function is nontrivial (therefore kernels are nontrivial) 

•  Theorem 4 : On functions f and g, the two functions 
have a nontrivial common divisor if and only if there 
exist kernels kf ∈ K(f) and kg ∈ K(g) such that kfg = kf ∩ 
kg is nontrivial (called nontrivial kernel intersection) 

•  Theorem 4 (necessity) : If f and g have a nontrivial kernel 
intersection, then they have a nontrivial common divisor. 
Ø  PROOF hints : Simply show that a nontrivial kernel intersection kfg 

is the divisor for both f and g . 
	



Kernel Intersection for Optimizing  
Multiple Functions (2) 

•  Theorem 4 (sufficiency) : If f and g have a nontrivial common 
divisor, then they have a nontrivial kernel intersection. 
Ø  PROOF sketches: 

ü Let d be the nontrivial common divisor for f and g. Make d cube-
free and call this e (If d is cube-free, then e = d. Otherwise, e is 
the kernel of d). 

ü e is the common nontrivial (cube-free) divisor for f and g. 
ü By Theorem 3, there exist kf ∈ P(f) , kg ∈ P(g) such that e ⊆ kf , e 
⊆ kg .  

ü Since e is cube-free, such kf and kg are also cube-free. 
Therefore both kf and kg are kernels for f and g, respectively (kf 
∈ K(f) , kg ∈ K(g)).  

ü Since e ⊆ kf ∩ kg , and e is nontrivial (since it is cube-free), kf ∩ 
kg is nontrivial. 



Kernel Intersection for Optimizing  
Multiple Functions (3) 

•  Implications of Theorem 4 : 
Ø Nontrivial kernel intersections are nontrivial 

common divisors.  
à Good divisor candidate 
Ø If there are no nontrivial kernel intersections, this 

indicates that there are no common divisors.  
à Search for other types of divisors (common 

cubes, kernels) 



Kernel Intersection Extraction  
by Rectangle Covering (1) 

•  Cokernel-cube matrix： 
–  Assign a distinct index to each cube in each node (starting from 1) 
–  Assign all cokernels to rows 
–  Assign all cubes contained in each kernel (kernel-cube) to columns. 
–  At each matrix element, assign the index of the cube which is 

formed by the product of the kernel-cube (row) and its 
corresponding cokernel (column). If there is no such pair, assign 0. 

F = abd+acd+bc+bf+cf 
 
G = adf+bf+cf+ef 
 
H = ade+bc+ce 

cokernel kernel 
F ad b+c 
F b ad+c+f 
F c ad+b+f 
F f b+c 
G f ad+b+c+e 
H c b+e 
H e ad+c 

ad b c d e f 
F:ad 0 1 2 0 0 0 
F:b 1 0 3 0 0 4 
F:c 2 3 0 0 0 5 
F:f 0 4 5 0 0 0 
G:f 6 7 8 0 9 0 
H:c 0 11 0 0 12 0 
H:e 10 0 12 0 0 0 

1 2 3 4 5 

6 7 8 9 

10 11 12 



Kernel Intersection Extraction  
by Rectangle Covering (2) 

F = abd+acd+bc+bf+cf 
 
G = adf+bf+cf+ef 
 
H = ade+bc+ce 

ad b c d e f 
F:ad 0 1 2 0 0 0 
F:b 1 0 3 0 0 4 
F:c 2 3 0 0 0 5 
F:f 0 4 5 0 0 0 
G:f 6 7 8 0 9 0 
H:c 0 11 0 0 12 0 
H:e 10 0 12 0 0 0 

X = b+c 
FX = ad+f 
F = XFX+abd+acd+bc+bf+cf 
GX = f 
G = XGX+adf+bf+cf+ef 
H = ade+bc+ce 

•  A rectangle (R, C) in the 
cokernel-cube matrix M is a 
subset of rows R and 
subset of columns C such 
that M(i, j) ≠ 0 for all i ∈ R 
and j ∈ C.  

•  A nontrivial kernel 
intersection is a rectangle 
(R, C) in cokernel-cube 
matrix such that |R| ≥ 2 and 
|C| ≥ 2 . 

•  Also allow rectangle cover 
overlap at “don’t-care” 
cubes. 

1 2 3 4 5 

6 7 8 9 

10 11 12 

When changing rectangle elements 
to don’t-care, other elements with 
the same index needs to be changed 

don’t-care cubes 

ad b c d e f 
F:ad 0 * * 0 0 0 
F:b * 0 3 0 0 * 
F:c * 3 0 0 0 * 
F:f 0 * * 0 0 0 
G:f 6 * * 0 9 0 
H:c 0 11 0 0 12 0 
H:e 10 0 12 0 0 0 



Kernel Intersection Extraction  
by Rectangle Covering (3) 

ad b c d e f 
F:ad 0 1 2 0 0 0 
F:b 1 0 3 0 0 4 
F:c 2 3 0 0 0 5 
F:f 0 4 5 0 0 0 
G:f 6 7 8 0 9 0 
H:c 0 11 0 0 12 0 
H:e 10 0 12 0 0 0 

X = b+c 
FX = ad+f 
F = XFX+abd+acd+bc+bf+cf 
GX = f 
G = XGX+adf+bf+cf+ef 
H = ade+bc+ce 

X = b+c 
Y = ad + c 
FX = ad+f 
FY = b 
F = XFX+YFY+abd+acd+bc+bf+cf 
GX = f 
GY = f 
G = XGX+YGY+adf+bf+cf+ef 
HY = e 
H = YHY+ade+bc+ce 

ad b c d e f 
F:ad 0 * * 0 0 0 
F:b * 0 3 0 0 * 
F:c * 3 0 0 0 * 
F:f 0 * * 0 0 0 
G:f 6 * * 0 9 0 
H:c 0 11 0 0 12 0 
H:e 10 0 12 0 0 0 



Cost Function of Rectangles on 
Cokernel-Cube Matrix 

•  wr(i) : # literals in cokernel in row i. 
•  wc(j) : # literals in kernel-cube in row j. 
•  b(i, j) : Boolean flag on element (i, j)  

–  0 (if M(i, j) = 0 || M(i, j) = ‘*’) 
–  1 (otherwise) 

•  Weight(R, C) = Σi∈R, j∈C b(i, j) (wr(i) + wc(j)) 
•  Overhead(R, C) = Σi∈R wr(i) + Σj∈C wc(j) 
•  Merge(R, C) =  2 × (# nodes containing cube C) 
•  ΔLiteral(R, C) = Overhead(R, C) + Merge(R, C) – Weight(R, C)  
•  ΔNode(R, C) = (# nodes containing cube C) + 1 
•  ΔGate(R, C) = ΔLiteral(R, C) – ΔNode(R, C)  

 = – Σi∈R, j∈C b(i, j) (wr(i) + wc(j))  
 + Σi∈R wr(i) + Σj∈C wc(j) + (# nodes containing cube C) – 1 

X = b+c 
FX = ad+f 
F = XFX+abd+acd+bc+bf+cf 
GX = f 
G = XGX+adf+bf+cf+ef 
H = ade+bc+ce 



Kernel Intersection Extraction  
by Rectangle Covering 

F = abd+acd+bc+bf+cf 
 
G = adf+bf+cf+ef 
 
H = ade+bc+ce 

Weight(R, C) = 14 
Overhead(R, C) = 6 
Merge(R, C) = 4 
ΔLiteral(R, C) = 4 + 6 – 14 = –4  
ΔNode(R, C) = 3 
ΔGate(R, C) = – 4 – 3 = – 7  

ad b c d e f 
F:ad 0 1 2 0 0 0 
F:b 1 0 3 0 0 4 
F:c 2 3 0 0 0 5 
F:f 0 4 5 0 0 0 
G:f 6 7 8 0 9 0 
H:c 0 11 0 0 12 0 
H:e 10 0 12 0 0 0 

ad b c d e f 
F:ad 0 * * 0 0 0 
F:b * 0 3 0 0 * 
F:c * 3 0 0 0 * 
F:f 0 * * 0 0 0 
G:f 6 * * 0 9 0 
H:c 0 11 0 0 12 0 
H:e 10 0 12 0 0 0 

Weight(R, C) = 10 
Overhead(R, C) = 6 
Merge(R, C) = 6 
ΔLiteral(R, C) = 6 + 6 – 10 = 2  
ΔNode(R, C) = 4 
ΔGate(R, C) = 2 – 4 = – 2  

1 2 3 4 5 

6 7 8 9 

10 11 12 

ad b c d e f 
F:ad 0 * * 0 0 0 
F:b * 0 * 0 0 * 
F:c * * 0 0 0 * 
F:f 0 * * 0 0 0 
G:f * * * 0 9 0 
H:c 0 11 0 0 * 0 
H:e * 0 * 0 0 0 

X = b+c 
FX = ad+f 
F = XFX+bc 
GX = f 
G = XGX+adf+ef 
H = ade+bc+ce 

X = b+c 
Y = ad + c 
FX = ad+f 
FY = b 
F = XFX+YFY 

GX = f 
GY = f 
G = XGX+YGY+ef 
HY = e 
H = YHY+bc 



Multi-Level Logic Optimization Flow 

Optimization schemes on a set of functions {fi} 
A)  Nontrivial common divisor extraction : 

•  generate the kernel sets for each fi. 
•  Select a pair of kernels ki ∈ K(fi) and kj ∈ K(fj) where i ≠ j such that 

ki ∩ kj is nontrivial. If such kernel intersection exists, use ki ∩ kj as 
divisors to divide all functions divisible by ki ∩ kj. 

B)  Common cube extraction : 
•  Select a pair of cubes ci ∈ fi and cj ∈ fj where i ≠ j such that ci ∩ cj 

has 2 or more literals. If such common cube exists, use ci ∩ cj as 
divisors to divide all functions divisible by ci ∩ cj.  

ü  NOTE : intersections on cubes assumes cubes as a set of literals 
C)  Division decomposition on each function fi : 

•  Select a kernel ki ∈ K(fi) and divide fi by ki. 


