
VLSI System Design 
Part II : Logic Synthesis (1) 

 
Lecturer : Tsuyoshi Isshiki 

Dept. Communications and Computer Engineering, 
Tokyo Institute of Technology 

isshiki@vlsi.ce.titech.ac.jp 



Logic Synthesis 
1.  Logic synthesis types 

a.  Combinational logic synthesis 
l  Two-level logic 
l  Multi-level logic 

b.  Sequential logic (finite state machine) synthesis 
l  State minimization 
l  State encoding 

2.  Currently available logic synthesis CAD tool 
l  Mainly two-level/multi-level logic synthesis 
l  State code optimization for sequential logic 



Logic Synthesis Flow 

Boolean Network 

Gate-level Netlist 

Logic Optimization 

Technology Mapping 

l  Minimize # of literals 

l  Speed 
l  Area 
l  Power 

Technology-Dependent 
Standard-Cell Library 

RTL Description(Verilog, VHDL) 



RTL-to-Logic Translation (1) 

module str1101(clk, in, out); 
input clk, in; 
output out; 
reg [1:0] state; 
reg out; 
always@(posedge clk) begin 
  state <= 2’b00; 
  out <= 0; 
  case(state) 
    2’b00: if(in == 1) state <= 2’b01; 
    2’b01: if(in == 1) state <= 2’b10; 
    2’b10: if(in == 0) state <= 2’b11; 
           else state <= 2’b10; 
    2’b11: if(in == 1) begin 
             out <= 1; 
             state <= 2’b01; 
             end 
    endcase 
  end 
endmodule 

A)  Combinational logic extraction :  
 RTL description is partitioned into combinational logic part and 
storage elements (DFF, latches) 

D Q comb. 
logic in 

clk 

state 
n_state 
n_out 

 
reg [1:0] n_state; 
reg n_out; 
 
always@(in or state) begin 
  n_state = 2’b00; 
  n_out = 0; 
  case(state) 
    2’b00: if(in == 1) n_state = 2’b01; 
    2’b01: if(in == 1) n_state = 2’b10; 
    2’b10: if(in == 0) n_state = 2’b11; 
           else n_state = 2’b10; 
    2’b11: if(in == 1) begin 
             n_out = 1; 
             n_state = 2’b01; 
             end 
    endcase 
  end 
 
always@(posedge clk) begin 
    state <= n_state; out <= n_out; 
end 
	


out 



RTL-to-Logic Translation (2) 
B)  Logic equation transformation : 

 For each output variable, compute the conditions in which the 
value evaluates as 1, 0, and don’t-care (DC). 

begin 
  n_state = 2’b00; 
  n_out = 0; 
  case(state) 
    2’b00: if(in == 1) n_state = 2’b01; 
    2’b01: if(in == 1) n_state = 2’b10; 
    2’b10: if(in == 0) n_state = 2’b11; 
           else n_state = 2’b10; 
    2’b11: if(in == 1) begin 
             n_out = 1; 
             n_state = 2’b01; 
             end 
    endcase 
end 

  if(state == 2’b00 && in == 1 || 
     state == 2’b10 && in == 0 || 
     state == 2’b11 && in == 1) 
     n_state[0] = 1; 
  else n_state[0] = 0; 
 
  if(state == 2’b01 && in == 1 || 
     state == 2’b10) 
     n_state[1] = 1; 
  else n_state[1] = 0; 
 
  if(state == 2’b11 && in == 1) 
     n_out = 1; 
  else n_out = 0; 
	


  n_state[0] =  
    (~state[0] & ~state[1] & in || 
     ~state[0] & state[1] & ~in || 
     state[0] & state[1] & in); 
 
  n_state[1] =  
    (state[0] & ~state[1] & in || 
     ~state[0] & state[1]); 
 
  n_out = state[0] & state[1] & in); 



RTL-to-Logic Translation (3) 

module str11011(clk, rst, in, out); 
input clk, in; 
output out; 
reg [2:0] state; 
reg out; 
always@(posedge clk) begin 
  state <= 3’b000; 
  out <= 0; 
  if(rst == 0) 
    case(state) 
      3’b000: if(in == 1) state <= 3’b001; 
      3’b001: if(in == 1) state <= 3’b010; 
      3’b010: if(in == 0) state <= 3’b011; 
              else state <= 3’b010; 
      3’b011: if(in == 1) state <= 3’b100; 
      3’b100: if(in == 1) begin 
                out <= 1; 
                state <= 3’b010; 
                end 
      default: begin // don’t-care state 
               state <= 3’bx; 
               out <= x; 
               end 
    endcase 
endmodule 

...... 
reg [2:0] n_state; 
reg n_out; 
 
always@(in or rst or state) begin 
  n_state = 3’b000; 
  n_out = 0; 
  if(rst == 0) 
    case(state) 
      3’b000: if(in == 1) n_state = 3’b001; 
      3’b001: if(in == 1) n_state = 3’b010; 
      3’b010: if(in == 0) n_state = 3’b011; 
              else n_state = 3’b010; 
      3’b011: if(in == 1) n_state = 3’b100; 
      3’b100: if(in == 1) begin 
                n_out = 1; 
                n_state = 3’b010; 
                end 
      default: begin // don’t-care state 
               n_state = 3’x; 
               out = x; 
               end 
    endcase 
  end 
 
always@(posedge clk) begin 
    state <= n_state; out <= n_out; 
end 
 
...... 

A)   Combinational logic extraction 



RTL-to-Logic Translation (4) 
B)  Logic equation transformation : 

begin 
  n_state = 3’b000; 
  n_out = 0; 
  if(rst == 0) 
    case(state) 
      3’b000: if(in == 1) n_state = 3’b001; 
      3’b001: if(in == 1) n_state = 3’b010; 
      3’b010: if(in == 0) n_state = 3’b011; 
              else n_state = 3’b010; 
      3’b011: if(in == 1) n_state = 3’b100; 
      3’b100: if(in == 1) begin 
                n_out = 1; 
                n_state = 3’b010; 
                end 
      default: begin // don’t-care state 
               n_state = 3’x; 
               out = x; 
               end 
    endcase 
  end 

  if(state == 3’b000 && in == 1 || 
     state == 3’b010 && in == 0) 
     n_state[0] = 1; 
  else if(state == 3’b101 || 
     state == 3’b110 || 
     state == 3’b111) 
     n_state[0] = x; 
  else n_state[0] = 0; 
 
  if(state == 3’b001 && in == 1 || 
     state == 3’b010 || 
     state == 3’b100 && in == 1) 
     n_state[1] = 1; 
  else if(state == 3’b101 || 
     state == 3’b110 || 
     state == 3’b111) 
     n_state[1] = x; 
  else n_state[1] = 0; 
 
  if(state == 3’b011 && in == 1) 
     n_state[2] = 1; 
  else if(state == 3’b101 || 
     state == 3’b110 || 
     state == 3’b111) 
     n_state[2] = x; 
  else n_state[2] = 0; 
 
  if(state == 3’b100 && in == 1) 
     n_out = 1; 
  else if(state == 3’b101 || 
     state == 3’b110 || 
     state == 3’b111) 
     n_out = x; 
  else n_out = 0; 
	




l  The study of logic synthesis started from two-level logic 
l  Optimized two-level logic is often the starting point for multi-level 

logic synthesis. 
l  Several types of two-level logic 

Ø  Sum-of-product (1st level : AND, 2nd level : OR) 
Ø  NAND-NAND (has the same structure as sum-of-product) 
Ø  Product-of-sum (1st level : OR, 2nd level : AND) 
Ø  NOR-NOR (has the same structure as product-of-sum) 

Boolean Function Implementation  
Using Two-Level Logic 

sum-of-product NAND-NAND 
product-of-sum NOR-NOR 

All four circuits implement the same function 

a
b
c
a
b

a
b
c
a
b

d d d

a
b
a
b
b
c

a
b
a
b
b
c

d



l  A programmable logic array is a device which can implement 
arbitrary Boolean function in sum-of-product form with N inputs, M 
outputs, and R products (cubes). 

l  Minimizing the number of products R results in smaller area (N and 
M are fixed for a given function) 

Programmable Logic Array 

a b c f0 f1 

pull-up 
resistor 

1st level NOR-plane 2nd level NOR-plane 

input inverter output inverter 

)( baba =+

)( caca =+

)( cbcb =+

)( baba =+

cabaf

cbcabaf

+=

++=

1

0



Boolean Function Terminologies (1) 

1.  Boolean function f with N inputs and M outputs is a mapping  
 f : {0, 1}N → {0, 1, X }M. (X : don’t-care) 

2.  If mapping to don’t-care values does not exist, the function is said to 
be completely specified. Otherwise it is said to be incompletely 
specified. 

3.  If M = 1, it is called a single-output function. Otherwise it is called a 
multiple-output function. 

4.  For each output fm of function f : 
•   ON-set is defined as the set of input values x such that fm(x) = 1 
•   OFF-set is defined as the set of input values x such that fm(x) = 0 
•   DC-set is defined as the set of input values x such that fm(x) = X 

5.  A literal is a Boolean variable or its complement. 
6.  A cube is a conjunction of literals (a product term). 
7.  A cover is a set of cubes  (interpreted as sum-of-product term). 



Boolean Function Terminologies (2) 
8.  A bit vector notation of a cube describes the polarity of each literal 

(0 : complemented literal, 1 : uncomplemented literal) for each 
variable in the Boolean function. If a variable does not appear in the 
cube, it is denoted as ‘-’ (also don’t-care) 
  Ex. x3 x2 x1 x0 → 1010    x3 x2 x0 → 11-0  

9.  A cube is called a k-cube if there are k elements of ‘-’ (don’t-care) in 
the bit vector notation. 

10.  A minterm is a cube that contains all variables in the Boolean 
function. Each minterm belongs to either the ON-set, OFF-set or the 
DC-set of a particular output of the function. A minterm is a 0-cube. 

  if(state == 3’b000 && in == 1 || 
     state == 3’b010 && in == 0) 
     n_state[0] = 1; 
  else if(state == 3’b101 || 
     state == 3’b110 || 
     state == 3’b111) 
     n_state[0] = x; 
  else n_state[0] = 0; 

function fn_state[0] (state[2], state[1], state[0], in) 

ON-set 

DC-set 

OFF-set 

0001 0100 
0000 001- 

0101 011- 100- 

101- 
110- 111- 



11.  The input variable space {0, 1}N can be modeled as a binary N-
dimensional hypercube 
l  Each vertex in the hypercube represents a minterm. 
l  k-cube is represented by a binary k-dimensional hypercube 
l  k-dimensional hypercube is sometimes referred to as “binary k-cube”	


Boolean Function Terminologies (3) 

0001 0011 

1001 1011 

0111 0101 

1101 1111 

0000 0010 
0110 0100 

1100 1110 
1010 1000 

OFF-set 

ON-set 

DC-set 

state[2] 

0 

state[1] 

state[0] 
in 

ON-set 

DC-set 

OFF-set 

0001 0100 
0000 001- 

0101 011- 100- 

101- 
110- 111- 

function fn_state[0] (state[2], state[1], state[0], in) 



12.  Analogy of Boolean algebra to Class calculus (Set Theory) 
l  logic variable → set 
l  logic negation → complement set 
l  logical 1 → universal set 
l  logical 0 → null set (φ ) 
l  logical AND → set intersection (a ⋅ b → a ∩ b) 
l  logical OR → set union (a + b → a ∪ b) 

Boolean Function Terminologies (4) 

universal set 

a a a b a b 

a ⋅ b (a ∩ b) a + b (a ∪ b) 



13.  Partial order and containment 
l  Partial order of logic variables : f ≤ g ⇔ (if f = 1, then g = 1) ⇔ f ⋅ g = f  

Ø  Interpretation in set theory → containment of sets : f ⊆ g 
l  Partial order of logic expression (cubes and covers) : 

 a b c ≤ a b → a b c ⊆ a b  
 b c ≤ a b + a c → b c ⊆ a b + a c  
 a c + b c ≤ a b + a c + a b c → a c + b c ⊆ a b + a c + a b c  

ü  Terminologies for set theory (intersection, union, containment) is often 
applied to logic expressions. 

Boolean Function Terminology (4) 

a b

c

a b

c

a b

c

a b c ⊆ a b b c ⊆ a b + a c a c + b c ⊆ a b + a c + a b c 

a b 

a b c a c 

a b 
b c  

a c 

a b 

a b c 

b c  
a c  



14.  An implicant for a particular output of a function is a cube which contains 
minterms only in the ON-set and DC-set. (In other words, a cube which 
does not intersect with the OFF-set) 

15.  A prime implicant (or simply, prime) is an implicant that is not contained 
by any other implicant, and intersects with the ON-set.  

16.  An essential prime implicant (or essential prime) is a prime that contains 
one or more minterms which are not contained by other primes. 

17.  A legal cover for a function is a set of implicants which contains the ON-
set and does not intersect with OFF-set (may intersect with DC-set). 

Boolean Function Terminology (5) 

ON-set  
DC-set 
OFF-set 

Implicants :  

Primes :  
Essential primes :  
Legal cover :  

a b c 
a b c a b c a b c 

a b c 

a b c a b c a b c 

a b c,  a b c, 
a b c,  a b c,  a b c, 
a b,  a b,  a c,  b c 

a b,  a c,  b c 
a b ,  a c  

a b +  a c  



l  Input : Boolean function representation using 
Ø  Truth table or 
Ø  Set of cubes in the ON-, OFF- and DC-sets. 

ü  Since the union of the ON-, OFF- and DC-sets is the universal set, 
specifying two sets (ex. ON-set and DC-set) is sufficient for 
describing a Boolean function. 

ü  For a completely specified function, only the ON-set is needed. 
l  Output : optimized Boolean function in terms of number of cubes (or 

sometimes number of literals) 
l  Algorithm :  

A)  Enumerate all prime implicants of the target function 
B)  Select a minimum set of prime implicants which are required to 

contain the ON-set of the target function. 

Two-Level Logic Optimization  



l  For a pair of cubes A and B, if there exists an cube C such that A + B 
= C, then A and B are said to be adjacent and are reducible to C.  

l  On the bit-vector representations, adjacency of a pair of implicants 
can be determined by comparing elements in each position : if only 
one position is different, and if all ‘-’ positions are same, then the 
implicant pair is adjacent. 

Preparation : Cube Reduction 

 a    b    c    d 
------------------ 
 1    1    1    0 
 1    1    1    1 
 
 1    1    1    - 
 
 1    1    0    - 
 1    1    1    - 
 
 1    1    -    -  

reducible 

reducible 

don’t-cares at the same position 

a b c d  
a b c d  

a b c  

a b c  
a b c  

a b  



Single-Output 2-Level Logic Minimization Using 
Quine-McCluskey Method (1) 

x[3:0] f[1] 
---------- 
0000  0 
0001  1 
0010  0 
0011  0 
0100  0 
0101  1 
0110  0 
0111  x 
1000  1 
1001  0 
1010  1 
1011  0 
1100  1 
1101  1 
1110  1 
1111  0 

truth table 
x[3:0] f[1] 
---------- 
0001  1 * 
0101  1 * 
0111  x * 
1000  1 * 
1010  1 * 
1100  1 * 
1101  1 * 
1110  1 * 

x[3:0] f[1] 
---------- 
0-01  1 
01-1  1 
-101  1 
10-0  1 * 
1-00  1 * 
1-10  1 * 
110-  1 
11-0  1 * 

x[3:0] f[1] 
---------- 
1--0  1 

0-cube table 

1-cube table 

2-cube table 

1.  Prime implicant extraction 
A)  From the truth table, delete minterms in OFF-set. 

(0-cube table : contains only minterm implicants)  
B)  k=0． 
C)  Let N be the # of rows in k-cube table. 

 If N=0, then terminate. 
D)  for(i = 0; i < N; i ++) 

for(j = i + 1; j < N; j ++) 
If rows i and j are adjacent,  
•  mark these 2 rows with ‘ * ’ 
•  add a reduced cube to (k+1)-cube table 
•  Output part of the reduced cube is 1 if it 

intersects with the ON-set. Otherwise (if it is 
fully contained in the DC-set), it is x. 

E)  k=k+1. Go to C) . 
F)  Rows whose output is 1 and without ‘ * ’ marked 

are the prime implicants.  



Single-Output 2-Level Logic Minimization Using 
Quine-McCluskey Method (2) 

x[3:0] f[1] 
---------- 

0001  1 * 
0101  1 * 
0111  x * 
1000  1 * 
1010  1 * 
1100  1 * 
1101  1 * 
1110  1 * 

x[3:0] f[1] 
---------- 

0-01  1 
01-1  1 
-101  1 
10-0  1 * 
1-00  1 * 
1-10  1 * 
110-  1 
11-0  1 * 

x[3:0] f[1] 
---------- 

1--0  1 
1--0  1 
	


0-cube table 1-cube table 2-cube table 

identical cubes are 
generated here. 
(delete the 2nd cube 
from the list) 



x[3:0] f[1] 
--------- 
0001  1 
0101  1 
1000  1 
1010  1 
1100  1 
1101  1 
1110  1 

 0  0  -  1  1 
 -  1  1  1  - 
 0  -  0  0  - 
 1  1  1  -  0 
--------------- 
 X 
 X  X  X 
             X 
             X 
          X  X 
       X  X 
             X 

prime implicant 2.  Prime implicant table generation 
A)  Assign ON-set minterms to each row 
B)  Assign prime implicants to each column 
C)  For each minterm row, mark an ‘X’ at the 

column whose prime implicant contains this 
minterm 

3.  Prime implicant cover extraction 
containing all ON-set minterm 

  （minimum unate covering problem：NP-complete） 
A)  Delete dominated prime (column) and 

dominating minterm (row) 
B)  Extract essential primes and delete all 

minterms (rows) which are contained in these 
essential primes. 

C)  Arbitrary select a prime and delete all minterms 
which are contained in this prime. 

Single-Output 2-Level Logic Minimization Using 
Quine-McCluskey Method (3) 

ON-set minterm 

Techniques to reduce  
the problem complexity 
(can be applied in any order) 



x[3:0] f[1] 
--------- 
0001  1 
0101  1 
1000  1 
1010  1 
1100  1 
1101  1 
1110  1 

 0  0  -  1  1 
 -  1  1  1  - 
 0  -  0  0  - 
 1  1  1  -  0 
--------------- 
 X 
 X  X  X　　　　　　 
             X 
             X 
          X  X 
       X  X 
             X 

•  Row 0101 is the 
dominating minterm of row 
0001. 
•  Row 1100 is the 
dominating minterm of rows 
1000, 1010 and 1110. 

3.A Elimination of dominating minterms 
l  Prime set for a minterm 

 A set of primes which contain the minterm 
 Ex: prime set for 0101 is {0-01, 01-1, -101} 

l  Dominating minterm : 
 On a pair of minterms, if the prime set of one 
of the minterm contains that of the other, the 
former minterm is said to be the dominating 
minterm of the latter. 

 
Ø  Prime set is the set of candidate for 

covering the particular minterm. 
Dominating minterms can be eliminated 
from the problem since the prime which 
covers some dominated minterm always 
covers the corresponding dominating 
minterm. 

 

Single-Output 2-Level Logic Minimization Using 
Quine-McCluskey Method (4) 



x[3:0] f[1] 
--------- 
0001  1 
0101  1 
1000  1 
1010  1 
1100  1 
1101  1 
1110  1 

 0  0  -  1  1 
 -  1  1  1  - 
 0  -  0  0  - 
 1  1  1  -  0 
--------------- 
 X 
 X  X  X　　　　　　 
             X 
             X 
          X  X 
       X  X 
             X 

•  Column 01-1 is the 
dominated prime of column 
0-01 and -101. 

3.A Elimination of dominated primes 
l  Minterm set for a prime 

 A set of minterms which are contained by the 
prime 
 Ex: minterm set for 0-01 is {0001, 0101} 

l  Dominated prime : 
 On a pair of primes, if the minterm set of one 
of the prime contains that of the other, the 
latter prime is said to be the dominated prime 
of the former. 

 
Ø  Dominated primes can be eliminated 

from the problem since the entire 
minterm set of a dominated prime is 
always covered by the dominating prime.  

Single-Output 2-Level Logic Minimization Using 
Quine-McCluskey Method (5) 



x[3:0] f[1] 
--------- 
0001  1 
1000  1 
1010  1 
1101  1 
1110  1 

 0  -  1  1 
 -  1  1  - 
 0  0  0  - 
 1  1  -  0 
------------ 
 X 
          X 
          X 
    X  X 
          X 

essential primes 

x[3:0] f[1] 
--------- 
0001  1 
0101  1 
1000  1 
1010  1 
1100  1 
1101  1 
1110  1 

 0  0  -  1  1 
 -  1  1  1  - 
 0  -  0  0  - 
 1  1  1  -  0 
--------------- 
 X 
 X  X  X　　　　　　 
             X 
             X 
          X  X 
       X  X 
             X 

x[3:0] f[1] 
--------- 
1101  1 

 -  1 
 1  1   
 0  0   
 1  -   
------ 
 X  X 
           

3.B Extraction of essential primes 
Ø  An essential prime implicant (or essential prime) is a prime 

that has at least one ON-set minterm which are not 
contained in any other primes. Such minterms are called 
essential minterms. 

Single-Output 2-Level Logic Minimization Using 
Quine-McCluskey Method (6) 



x[3:0] f[1] 
--------- 
1101  1 

 -  1 
 1  1   
 0  0   
 1  -   
------ 
 X  X 
           

3.C Arbitrary selection of remaining primes 
l  If 3.A (elimination of dominating minterms and dominated primes) and 

3.B (essential prime extraction) cannot further be applied, select an 
arbitrary remaining prime and delete the rows (minterms) which is 
contained in this prime. Try 3.A and 3.B again. 

l  If all minterms have been covered, then TERMINATE. 
l  In order to obtain an optimal cover, do all combinations of the 

arbitrary prime selection. 

x[3:0] f[1] 
--------- 

 1 
 1   
 0   
 -   
--- 

Single-Output 2-Level Logic Minimization Using 
Quine-McCluskey Method (7) 

select an arbitrary prime No minterm left to cover 
TERMINATE 

 0  0  -  1  1 
 -  1  1  1  - 
 0  -  0  0  - 
 1  1  1  -  0 
--------------- 
 X 
 X  X  X 
             X 
             X 
          X  X 
       X  X 
             X 

x[3:0] f[1] 
--------- 
0001  1 
0101  1 
1000  1 
1010  1 
1100  1 
1101  1 
1110  1 

obtained prime cover 



x[3:0] f[1:0] 
---------- 
0000  00 
0001  10 
0010  00 
0011  0x 
0100  0x 
0101  10 
0110  01 
0111  x0 
1000  11 
1001  00 
1010  11 
1011  01 
1100  1x 
1101  11 
1110  10 
1111  00 

truth table 

1.  Prime Implicant Extraction 
A)  Extract the prime implicants for each output seperately. 

Multiple-Output 2-Level Logic Minimization 
Using Quine-McCluskey Method (1) 

x[3:0] f[1] 
---------- 
0001  1 * 
0101  1 * 
0111  x * 
1000  1 * 
1010  1 * 
1100  1 * 
1101  1 * 
1110  1 * 

x[3:0] f[1] 
---------- 
0-01  1 
01-1  1 
-101  1 
10-0  1 * 
1-00  1 * 
1-10  1 * 
110-  1 
11-0  1 * 

x[3:0] f[1] 
---------- 
1--0  1 

0-cube table 1-cube table 2-cube table 

x[3:0] f[0] 
---------- 
0011  x * 
0100  x * 
0110  1 
1000  1 * 
1010  1 * 
1011  1 * 
1100  x * 
1101  1 * 

x[3:0] f[0] 
---------- 
-011  1 
-100  x 
10-0  1 
1-00  1 
101-  1 
110-  1 

0-cube table 1-cube table 

f[1] f[1] f[1] 

f[0] 
not a prime implicant 
because the output is ‘x’	




x[3:0] f[1:0] 
---------- 
0-01  10 
01-1  10 
-101  10 
110-  11 
1--0  10 
 
0110  01 
-011  01 
10-0  11 
1-00  11 
101-  01 
110-  11 

prime implicant list 

2.  Prime Implicant List Merging 
²  mth prime implicant list corresponds to the prime 

implicant list for the mth output 
²  mth outputs in mth prime implicant list are all 1s by 

definition 
A)  For each prime p in the all prime implicant lists 

•  mth output is 1 if there exists a prime in the mth 
prime implicant list which contains p.  

•  mth output is 0 otherwise. 

Ø  This allows implicants other than the primes to be 
included in the candidate for minterm covering. 

Multiple-Output 2-Level Logic Minimization 
Using Quine-McCluskey Method (2) 

these are identical primes 
delete one of them from the list 



3.  Prime implicant table 
generation 

A)  Assign ON-set minterms to each 
row for each output 

B)  Assign prime implicants to each 
column 

C)  For each minterm row,  
•  mark an ‘|’ at the column 

whose output part of the 
corresponding prime implicant is 
0 for the corresponding output of 
this minterm 

•  Otherwise, mark an ‘X’ at the 
column whose prime implicant 
contains this minterm 

  

Multiple-Output 2-Level Logic Minimization Using 
Quine-McCluskey Method (3) 

 0  0  -  1  1  0  -  1  1  1 
 -  1  1  1  -  1  0  0  -  0 
 0  -  0  0  -  1  1  -  0  1 
 1  1  1  -  0  0  1  0  0  - 
------------------------------ 
 X              |  |        | 
 X  X  X        |  |        | 
             X  |  |  X  X  | 
             X  |  |  X     | 
          X  X  |  |     X  | 
       X  X     |  |        | 
             X  |  |        | 
------------------------------ 
 |  |  |     |  X            
 |  |  |     |        X  X 
 |  |  |     |        X     X 
 |  |  |     |     X        X 
 |  |  |  X  |                  

x[3:0] f[1:0] 
---------- 
0001  1- 
0101  1- 
1000  1- 
1010  1- 
1100  1- 
1101  1- 
1110  1- 
---------- 
0110  -1 
1000  -1 
1010  -1 
1011  -1 
1101  -1 

These primes cannot be used for covering 
because they intersect with the OFF-set of 
the corresponding output 



4.  Prime implicant cover extraction 
containing all ON-set minterms  
 (same as the single-output case) 

  

Multiple-Output 2-Level Logic Minimization Using 
Quine-McCluskey Method (4) 

 0  0  -  1  1  0  -  1  1  1 
 -  1  1  1  -  1  0  0  -  0 
 0  -  0  0  -  1  1  -  0  1 
 1  1  1  -  0  0  1  0  0  - 
------------------------------ 
 X              |  |        | 
 X  X  X        |  |        | 
             X  |  |  X  X  | 
             X  |  |  X     | 
          X  X  |  |     X  | 
       X  X     |  |        | 
             X  |  |        | 
------------------------------ 
 |  |  |     |  X            
 |  |  |     |        X  X 
 |  |  |     |        X     X 
 |  |  |     |     X        X 
 |  |  |  X  |                  

x[3:0] f[1:0] 
---------- 
0001  1- 
0101  1- 
1000  1- 
1010  1- 
1100  1- 
1101  1- 
1110  1- 
---------- 
0110  -1 
1000  -1 
1010  -1 
1011  -1 
1101  -1 

 0  1  1  0  1  1 
 -  1  -  1  0  0 
 0  0  -  1  -  1 
 1  -  0  0  0  - 
------------------ 
 X        |     | 
       X  |     | 
------------------ 
 |     |  X      
 |     |     X   
 |     |        X 
 |  X  |            

x[3:0] f[1:0] 
---------- 
0001  1- 
1110  1- 
---------- 
0110  -1 
1000  -1 
1011  -1 
1101  -1 

 0  -  1  1  0  1  1  1 
 -  1  1  -  1  0  -  0 
 0  0  0  -  1  -  0  1 
 1  1  -  0  0  0  0  - 
------------------------ 
 X           |        | 
    X  X     |        | 
          X  |        | 
------------------------ 
 |  |     |  X         
 |  |     |     X  X 
 |  |     |     X     X 
 |  |     |           X 
 |  |  X  |               

x[3:0] f[1:0] 
---------- 
0001  1- 
1101  1- 
1110  1- 
---------- 
0110  -1 
1000  -1 
1010  -1 
1011  -1 
1101  -1 



Improving Quine-McCluskey Method  
(Espresso-EXACT, UC Berkeley) 

•  Problems 
–  Need to specify all minterms 
–  Need a large number of cube reducibility tests. 

Ø Only a small portion will pass the test to generate reduced cubes. 
Ø  Identical primes may be generated multiple times. 

–  Size of the prime implicant table is large since each row 
corresponds to minterms 

•  Improvements 
–  Extract all the prime implicants directly without enumerating 

minterms. 
–  Generate a reduced prime implicant table and solve the minimum 

covering problem on this smaller table. 



Direct Extraction of Prime Implicants 
(Preperation 1) 

•  Corollary 1 : Let P be a cover for a completely specified function f. 
For any implicant c of f, there exists c’ ∈ P such that c ⊆ c’ if and only 
if P includes all primes of f. 

•  Theorem 1 : Let Pf and Pg be the covers for completely specified 
functions f, and g, respectively. And let Pfg be Pf ⋅ Pg that is expanded 
in sum-of-product form. If Pf and Pg include all primes for f and g, 
respectively, then Pfg includes all primes of function f ⋅ g. 

•  Proof :  
Ø  By definition, Pfg is a cover whose cube elements are the non-zero 

conjunctions of a cube in Pf and cube in Pg ;  
  Pfg= {cf ⋅ cg | cf ∈ Pf , cg ∈ Pg , cf ⋅ cg ≠ 0 }. 

Ø  Any implicant of the function f ⋅ g is also an implicant for both f and g (if f ⋅ g 
is true, then both f and g must be true as well). Thus for any implicant c of f 
⋅ g, there exists cf ∈ Pf and cg ∈ Pg such that c ⊆ cf and c ⊆ cg. Therefore c ⊆ 
cf ⋅ cg ∈ Pfg.  



Direct Extraction of Prime Implicants 
(Preperation 2) 

•  Theorem 2： Let P be a cover for a completely specified function f, 
and P’ be the cover for the complement of f (denoted as f ) which is 
obtained by applying De-Morgan’s Law to P and then expanding it to 
sum-of-product form. P’ includes all primes of f. 
 (Let us call this the Negate-And-Expand Method) 

•  Proof : 
•  Let P = c0 + c1 + …+ cn (ci is a cube) 

•  By De-Morgan’s Law : P = c0 + c1 + …+ cn = c0 ⋅ c1 ⋅ … ⋅ cn ---- (1) 

•  A complement of a cube becomes a cover composed of single-
literal cubes. Each single-literal cube is the prime of this cover. 
  Ex.  x0 ⋅ x1 ⋅ x2  =  x0 + x1 + x2 

•  Since each term in eq(1) becomes a cover composed of primes 
for that cover, expanding these terms into sum-of-product form 
results in a cover composed of all primes of f. (according to 
Theorem 1) 



Negate-And-Expand Method 
x[3:0] f 
--------- 
-0-1  1 
1-10  1 
-01-  1 
01--  1 
1--1  1 

negate 
cubes 

01--   
010-   
-10-   
-10-   
-1-1   
-101   
01-0   
0-00   
-100   
--00   
 
1--- 
-0-- 
 
0--- 
---0 

01--   
-10-   
-1-1   
--00   
 
1---   
-0--   
 
0--- 
---0 

110-   
11-1   
1-00   
-000   
 
0---   
---0   

-1--   
---0 
 
0--- 
--0- 
---1 
 
-1-- 
--0- 
 
1--- 
-0-- 
 
0--- 
---0 

01-- 
-10- 
-1-1 
0--0 
--00 
 
-1-- 
--0- 
 
1--- 
-0-- 
 
0--- 
---0 

AND 

0000 
1100 
1-00 
-000 

1-00 
-000 

Single Cube Containment Minimality 
01--   
010-  * 
-10-   
-10-  * 
-1-1   
-101  * 
01-0  * 
0-00  * 
-100  * 
--00   

For each cube in the list, if some 
other cube contains it, then delete 
this cube from the list. 
Ex： 
01-- contains 010- (delete 010-) 
-1-1 contains -101 (delete -101) 

delete 

simplify 

simplify 
AND 

AND 
AND 



Direct Extraction of Prime Implicants for 
Completely Specified Functions 

Ø  By applying Negate-And-Expand twice on a cover for a completely 
specified function f, the obtained cover becomes the entire set of 
primes for f . 
  Ex. f  =  x0 x2 + x0 x1 x3 + x1 x2 + x2 x3+ x0 x3 

	


x[3:0] f 
--------- 
-0-1  1 
1-10  1 
-01-  1 
01--  1 
1--1  1 

1-00   
-000   

0--- 
--1- 
---1 
 
-1-- 
--1- 
---1 

01-- 
0-1- 
0--1 
-11- 
--1- 
--11 
-1-1 
--11 
---1 

01-- 
--1- 
---1 

negate 
cubes 

Negate-And-Expand 
(2nd time) 

x[3:0] f 
--------- 
0000  0 
0001  1 
0010  1 
0011  1 
0100  1 
0101  1 
0110  1 
0111  1 
1000  0 
1001  1 
1010  1 
1011  1 
1100  0 
1101  1 
1110  1 
1111  1 

truth table 
Negate 
And 
Expand 
(1st time) 

AND 

simplify 



Direct Extraction of Prime Implicants for 
Incompletely Specified Functions 

Ø  For an incompletely specified function f , apply the Negate-And-
Expand operations twice on the cover containing both the ON-set 
and DC-set. The obtained cover includes all primes of f and 
possibly other implicants which do not intersect with the ON-set. 
(DC-implicants) 

 x[3:0] f 
--------- 
-0-1  1 
1-10  1 
-01-  x 
01--  x 
1--1  x 

x[3:0] f 
--------- 
0000  0 
0001  1 
0010  x 
0011  1 
0100  x 
0101  x 
0110  x 
0111  x 
1000  0 
1001  1 
1010  1 
1011  1 
1100  0 
1101  x 
1110  1 
1111  x 

1-00   
-000   

Negate-And-Expand 
(1st time) 

01-- 
--1- 
---1 

--1- 
---1 

Q 

OFF-set 
R 

ON-set 
F 

DC-set 
D 

entire prime  
set Q 

truth table 

(OFF-set cover) 

Negate-And-Expand 
(2nd time) 

Eliminate 
DC-implicants 

(Prime set) 

ON-set 

DC-set 

(Prime set + DC-implicants) 
R =  F ∪ D Q’ =  F ∪ D 



Function Negation Methods (1) 

Ø  Computation time of Negate-And-Expand operation can become very 
long when there are a large degree of redundancy in the cover 
representation of the function (i.e. a large number of small cubes).  

Ø  While the 2nd negation requires Negate-And-Expand operation in 
order to obtain the entire prime set, the obtained cover after the 1st 
negation (OFF-set cover) does not have to be the entire prime set for 
the negated function.  

Ø  Shannon Expansion method can be used for the 1st negation to obtain 
the OFF-set cover. 

Ø  The cover obtained by Shannon Expansion does not include all 
primes for the negated function, but its redundancy is relatively low. 
Also, the computational complexity is significantly lower than Negate-
And-Expand Method. 



•  fxi : cofactor of f with respect to factor xi  
  fxi = f (x0, …, xi–1, 1, xi–1, …, xn–1),  fxi = f (x0, …, xi–1, 0, xi–1, …, xn–1) 
  Ex : f = a b c + a c d + b c d 
  fa = b c + c d + b c d, fa = b c d, fac = d + b d 

•  Shannon expansion : f = xi fxi + xi fxi  
•  Shannon expansion negation : f = xi fxi + xi fxi  
•  Recursive Shannon expansion negation : 

 Ex : f = a b c + a b c + b c 
 f = a fa +a fa = a (b c + b c + b c) + a (b c) 
 fa = b fab +b fab = b (c) + b (c + c) = b c 
 fa = b fab +b fab = b (0) + b (c) = b + b c 
 f = a fa +a fa = a (b c) + a (b + b c) = a b c + a b + a b c 

Shannon Expansion 



Function Negation by Shannon Expansion (1) 

x[3:0] f 
========= 
-0-1  1 
1-10  1 
-01-  1 
01--  1 
1--1  1 

1--- 
===== 
-0-1  
--10  
-01-  
---1  

0--- 
===== 
-0-1  
-01-  
-1--  

1--1 
===== 
-0--  
-01-  
----  

1--0 
===== 
--1-  
-01-  

1-00 
===== 

1-10 
===== 
----  
-0--  

01-- 
===== 
----  

00-- 
===== 
---1  
--1-  

001- 
===== 
---1  
----  

000- 
===== 
---1  

0001 
===== 
----  

0000 
===== 

x[3] 

x[0] 

x[2] 

x[1] 

x[1] 

x[0] 

factor 

factor’s 
bit-vector 

Cofactor cover 

0001 
001- 
01-- 
1-10 
1--1 

0000 
1-00 

If the cofactor cover 
includes a universal 
cube (all ‘-’), negation 
of this cofactor is 0. 

If the cofactor cover 
is a null set, 
negation of this 
cofactor is 1. 

To choose the cofactor, select the 
variable whose corresponding 
column has the least number of 
‘-’ as the cofactor. 

Ø  The set of factors whose leaf cofactor 
is 0 is equivalent to the OFF-set cover.  

Ø  The set of factors whose leaf cofactor 
is 1 is equivalent to the ON-set cover. 



Shannon Expansion on  
Multiple-Output Function 

x[3:0] f[1:0]  
--------- 
-0-1  11 
1-10  10 
-01-  01 
01--  11 
1--1  01 

x[3:0] f[1]  
--------- 
-0-1  1 
1-10  1 
01--  1 

x[3:0] f[0]  
--------- 
-0-1  1 
-01-  1 
01--  1 
1--1  1 

1---  
===== 
-0-1  
--10  

0--- 
===== 
-0-1  
-1--  

1--1  
===== 
-0--  

1--0  
===== 
--1-  

01-- 
===== 
----  

00-- 
===== 
---1  

1-00  
===== 

11-1  
===== 

00-0 
===== 

-1-- 
===== 
0---  
1--1  

-0-- 
===== 
---1  
--1-  
1--1  

11-- 
===== 
---1  

01-- 
===== 
----  

-0-1 
===== 
----  
--1-  
1---  

-0-0 
===== 
--1-  

-000 
===== 

11-0 
===== 

11-1  1- 
1-00  1- 
00-0  1- 

11-0  -1 
-000  -1 

OFF-set cover for f1 OFF-set cover for f0 

f1 = x0x2 + x0x1x3 + x2x3 

f0 = x0x2 + x1x2 + x2x3 + x0x3 



Negate-And-Expand Method for  
Multiple-Output Functions 

OFF-set cover 

0--- 
-0-- 
---0 
 
0--- 
--1- 
---1 
 
1--- 
-1-- 
---1 

0--- 
-01- 
-0-1 
--10 
 
1--- 
-1-- 
---1 

0--- 
-0-- 
---1 
 
-1-- 
--1- 
---1 

01-- 
0--1 
101- 
-011 
10-1 
-0-1 
1-10 
-110 

01-- 
0--1 
101- 
-0-1 
1-10 
-110 

01-- 
0-1- 
0--1 
-01- 
-0-1 
-1-1 
--11 
---1 

01-- 
0-1- 
-01- 
---1 

0--- 
0-1- 
0--1 
00-- 
-01- 
-0-1 
0--0 
--10 
 
1--- 
-1-- 
---1 

01--  1- 
0--1  1- 
101-  1- 
-0-1  1- 
1-10  1- 
-110  1- 
01--  -1 
0-1-  -1 
-01-  -1 
---1  -1 

01--  11 
0--1  11 
101-  11 
-0-1  11 
1-10  10 
-110  10 
0-1-  01 
-01-  01 
---1  01 

merge  
tables Simplify 

11-1  1- 
1-00  1- 
00-0  1- 

11-0  -1 
-000  -1 



Reduced Prime Implicant Table 
Generation (1) 

•  Essential prime set Er = {c | c ∈ Q, F ⊆ Q – c} : 
Ø  c is an essential prime if the prime set excluding c (“Q – c ” denotes the 

set Q whose element c is eliminated) does not contain the ON-set cover 
F. (therefore c is essential for covering F) 

Ø  Checking F ∩ c ⊆ Q – c (instead of F ⊆ Q – c) is sufficient. 

•  Containment check 
Ø  A ⊆ B ⇔ c ⊆ B for ∀c ∈ A  (A, B : cover, c : cube) 

ü  In order for a cover to be contained in another (partial order), all cube 
included in the former needs to be contained in the latter. 

Ø  c ⊆ B ⇔ Bc ≡ 1  (Bc : cofactor of B with respect to cube c) 
Ø  B ≡ 1 ⇔ Bx ≡ 1 ∧ Bx ≡ 1 (tautology check by recursion) 

 B  
===== 
-100 
1-10 
100- 
01-1 
00-- 

 c  
===== 
-0-0 

 Bc  
===== 
1-1- 
1-0- 
0--- 

 Bc x 
===== 
--1- 
--0- 

 Bc x 
===== 
---- 

– factoring 
with c 

⇒ tautology 

⇒ tautology 
⇒ c ⊆ B 

factoring 
with x x 

Recall: c ⊆ B ⇒ c ·B= c  



Reduced Prime Implicant Table 
Generation (2) 

•  Relatively redundant prime set Rr = Q – Er 
•  Totally redundant prime set Rt = {c | c ∈ Rr , c ⊆ Er} 
•  Partially redundant prime set Rp = Rr – Rt 

•  On obtaining a minimal prime set which covers the ON-set F 
ü  Er is always included 
ü  Rt is never included 
ü  Rp is the portion of the total prime set which is considered in the minimum 

covering problem. 
Ø  Each element of Rp corresponds to the columns of the reduced prime 

implicant table. 
Ø  Minterm set Mp which needs to be covered （rows of the reduced 

prime implicant table） 
ü  Mp = Er ∩ Rp  

ü  m ∩ Er = φ (m ∈ Mp) 

– 



Reduced Prime Implicant Table 
Generation (3) 

•  Computation of minterm set Mp (actually, each row may 
represent a collection of minterms) 

Ø  For each cube c ∈ Rp, consider the set R’ = Rp – c. 
Ø  Recursively divide c into smaller cubes at its don’t-care variables 

•  Ex. 0-1- → (001-,011-) → ((0010,0011),(0110,0111)) 

Ø  On each divided cubes c’: 
•  If c’ ⊆ Er, then c’ is not included in Mp. 
•  If there exists a cube d ∈ R’ such that c’ ⊆ d, then all minterms 

included in c’ is covered by the prime d. If so, add c’ to the row and 
mark ‘X’ to all columns which contain c’. (Note that there may be 
several cubes which contain c’) 

 If one of the two conditions above is satisfied, then c’ does not 
have to be divided anymore. 



Reduced Prime Implicant Table 
Generation (4) 

 Er  
===== 
01-- 
10-- 

 Rp  
===== 
0-1- 
-01- 
-101 
1-01 

c = 0-1- 001- ⊆ -01- ∈ R’ 011- ⊆ 01-- ∈ Er 
	


→ 
 R’  
===== 
-01- 
-101 
1-01 

c = -01- 001- ⊆ 0-1- ∈ R’ 101- ⊆ 10-- ∈ Er 
	


→ 
 R’  
===== 
0-1- 
-101 
1-01 

     | 0  -  -  1 
     | -  0  1  - 
     | 1  1  0  0 
     | -  -  1  1 
-----|----------- 
001- | X  X 

     | 0  -  -  1 
     | -  0  1  - 
     | 1  1  0  0 
     | -  -  1  1 
-----|----------- 
001- | X  X 

c = -101 0101 ⊆ 01-- ∈ Er 1101 ⊆ 1-01 ∈ R’	

→ 

 R’  
===== 
0-1- 
-01- 
1-01 

     | 0  -  -  1 
     | -  0  1  - 
     | 1  1  0  0 
     | -  -  1  1 
-----|----------- 
001- | X  X 
1101 |       X  X 

c = 1-01 1001 ⊆ 10-- ∈ Er 1101 ⊆ -101 ∈ R’	

→ 

 R’  
===== 
0-1- 
-01- 
-101 

     | 0  -  -  1 
     | -  0  1  - 
     | 1  1  0  0 
     | -  -  1  1 
-----|----------- 
001- | X  X 
1101 |       X  X 



Reduced Prime Implicant Table 
Generation (5) 

 F  
===== 
-100 
1-10 
100- 
01-1 
001- 
0-11 

 R  
===== 
11-1 
1-11 
000- 
0110 

 Q  
===== 
100- 
1--0 
010- 
-100 
01-1 
001- 
-010 
0-11 

 Er  
===== 
100- 
1--0 

 Rp  
===== 
010- 
-100 
01-1 
001- 
-010 
0-11 

     | 0  -  0  0  -  0 
     | 1  1  1  0  0  - 
     | 0  0  -  1  1  1 
     | -  0  1  -  0  1 
-----|------------------- 
0010 |          X  X 
0011 |          X     X 
0100 | X  X 
0101 | X     X 
0111 |       X        X 

     | 1  1  0  -  0  0  -  0 
     | 0  -  1  1  1  0  0  - 
     | 0  -  0  0  -  1  1  1 
min  | -  0  -  0  1  -  0  1 
-----|------------------------- 
0010 |                X  X 
0011 |                X     X 
0100 |       X  X 
0101 |       X     X 
0111 |             X        X 
1000 | X  X 
1001 | X 
1010 |    X              X 
1100 |    X     X 
1110 |    X 

Prime implicant table 

Reduced prime implicant table 

 Mｐ 
===== 
0010 
0011 
0100 
0101 
0111 

Rt = φ 

Mp 

ON-set cover 
(initial) OFF-set cover Prime set cover 

Essential 
prime set 

Minterms  
uncovered by Er 

Totally 
redundant 
prime set 

Partially 
redundant 
prime set 



Reduced Prime Implicant Table Generation (6) 
 F  
===== 
-1001 
1010- 
11--1 
011-0 
1-11- 
00-01 
-11-1 

 R  
===== 
00-1- 
00--0 
100-- 
-001- 
0-01- 
11-00 
--0-0 

 Q  
===== 
101-- 
1-11- 
1-1-1 
11--1 
011-- 
-111- 
-11-1 
-1-01 
0--01 
--101 

 Er  
===== 
101-- 
11--1 
011-- 
0--01 

 Rp  
===== 
1-11- 
-111- 

 Mp 
======= 
11110 

      | 1  -   
      | -  1   
      | 1  1   
      | 1  1   
      | -  -   
------|------- 
11110 | X  X   

      | 1  1  1  1  0  -  -  -  0  -   
      | 0  -  -  1  1  1  1  1  -  -   
      | 1  1  1  -  1  1  1  -  -  1   
      | -  1  -  -  -  1  -  0  0  0   
 min  | -  -  1  1  -  -  1  1  1  1   
------|------------------------------- 
00001 |                         X      
00101 |                         X  X   
01001 |                      X  X      
01100 |             X                  
01101 |             X     X  X  X  X   
01110 |             X  X               
01111 |             X  X  X            
10100 | X                              
10101 | X     X                    X   
10110 | X  X                           
10111 | X  X  X                        
11001 |          X           X         
11011 |          X                     
11101 |       X  X        X  X     X   
11110 |    X           X               
11111 |    X  X  X     X  X            

Prime implicant table 

Reduced prime implicant table 

 Rt  
===== 
1-1-1 
-11-1 
-1-01 
--101 

Mp 



Summary on  
Two-Level Logic Optimization 

•  Two-level logic optimization is first proposed by 
Quine and McCluskey, and since then has been 
studied widely. 

•  Based on Quine-McCluskey method, improvements 
have been made in prime extraction, prime table 
generation, covering techniques to reduce the 
computation time.  

•  Even though the computational complexity is NP-
complete (due to prime covering problem), near-
optimal solution can be obtained in short time. 

•  There are heuristic algorithms which solve the 
prime extraction/prime covering problems 
iteratively.  


