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Answers to Previous Exercises

1. Let N = 5 x 7 and x = 8. Compute r = ord(x, N).

r=4.

2. Tell whether or not x> mod N # N — 1.

82 mod 35 = 29 # 34.

3. Tell whether either gcd(x"/?> — 1 mod N, N) or ged(x’/?> + 1 mod N, N) is a
factor of N or not.

Yes, thay are factors. Explain how to compute the gcd by the Euclidean
algorithm.

The final report will be similar to Q4—6. 4. Compute |u;) with above values
and s = 1.

1
k _ - s _ .
\/_ E exp(—mi= )|8 mod 35) = 2(Il) i18) + (=1)[29)+i]22))
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5. Let U be as defined in the lecture. With above x and N, what is the
eigenvalue of U to which |u;) belongs?

exp(mi/2) = i.

6. Suppose that we execute the phase estimation procedure with the above U
and # Z;;(l) |ugy with t = 4 qubits for recording the value of a phase s/r.
There are 2" = 16 possible outcomes. Plot those 16 probabilities and observe
that outcomes corresponding to s/r for s = 0, ..., r — 1 have higher
probabilities than the rest.

Read the hint given in the last unit. The quantum state immediately before the
measurement in the phase estimation is

1
2 v @ —lus)u
5,8’

whose partial trace is

1 1 r—1
2wl Trllus)agl] = = > vl
s=0

.8’ _
” =0,

which is the equal probabilistic mixture of |vp), ..., [v,—1).

Matsumoto (Nagoya U.) OLE Cautse 11 Ciantuin Faltorization Algbritnin Sept. 2018 4/10



Therefore, the probability of getting measurement outcome ¢ is % Z;;(l) lavs o,
where [vg) = @;0[0) + s 1]1) + -+ - + a50-1|2" = 1), and

201

1

5 Z [exp (27i(6 - €/2"))1*(by using Unit 9)
k=0

A ¢

e
6 Z[exp Qri(s/4 — €/16))]F
k=0

{ probability ¢  probability
0 1/4 8 1/4

1 0 9 0

2 0 10 0

30 , 110

4 1/4 12 1/4

50 13 0

6 0 14 0

7 0 15 0

Observe that probabilities of £ near to 16s/4 (s = 0, ..., 3) have larger values.
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Continued fraction

r: the order of x” modulo N’.
We are given
X = O.blbz .. .bt

that is close to s/r with high probability. The remaining task is to compute r
from b1b, ... b;. r can be determined by the continued fraction algorithm.

A continued fraction is

a+ ———— (1)
a) + ——
ar+ T
-

where ay, ..., ay are positive integers and ag > 0. Denote the value of Eq. GF)
by [ao, ai, ..., an].
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Computation of a continued fraction

The representation of a continued fraction of rational x can be found, for
example, as follows:

31 5 1
- 24+ =24 —
13 "BTTED
5
1
= 2+ 3 =2+ :
2+§ 2+§
1
= 2+ 7 =2+ 7
2+¥ 2+E
3
1
= 2+ 7
2+ :
I+—
I+§
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How to find the phase by the continued fraction

Recall that we have to find r from
x=0.b1by...b;

such that x is close to s/r. We have the following theorem.

Theorem 1: Let [ay, ..., ay] be the continued fraction of x. If [x — s/r| < #
and ged(s, r) = 1, then s/r is equal to [ay, ..., a,] for some 0 < n < N.
Proof. Its proof is given in “Quantum Computation and Quantum
Information,” ISBN: 0521635039.

We can make |x —s/r| < # by increasing ¢ (the number of qubits used for
phase estimation). If we execute the order finding several times, we will
eventually have gcd(s, ) = 1. If we assume Theorem 1, the factorization can
be found as follows: Compute the continued fraction of x as [ay, ..., ay]. For
each 0 < n < N, write [ao, ..., a,] as p,/q, and check whether g, satisfies that
()% mod N’ = 1 and gcd(NV’, [(x)?/? + 1]) is a factor of N”. If it is the case,
we found a factor of N’. Otherwise, try again.
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Cost of continued fraction

Thus, if we assume Theorem 1, then what we have to do is to check the speed
(required computational time) of continued fraction computation.

Theorem 2: Let [ag, ..., ay] be the continued fraction of rational

x =p/q > 1. Define pg = ag, g0 = 1, p1 = 1 + apai, q1 = a1,

Pn = GpPn-1 7t Pn-2,
dn = apqn-1 t gn-2.
Then we have
Pn
- = [a()a“"an]
qn

forn=0,...,N.

Its proof is given in “Quantum Computation and Quantum Information,”
ISBN: 0521635039.

From the above theorem we can evaluate the required number N of
computational steps. Observe that p, > p,_1 and g, > g,—1. So we have
Dn = 2py—2 and g, > 2g,—2. Therefore N < 2log, max{p, q}.
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Exercise (15 min.?)

Let NV =35, x’ =4, and x = 0.0010101 = %. This can be a measurement
outcome of the phase estimation with ¢ = 7.

1. Compute the continued fraction of x.

2. Let [ay, ..., ay] be the continued fraction of x. Detemine an index n such
that g, is the order of x’ modulo N’, where p,/q, = [ao, ..., a,].

3. Compute a factor of N’ by using your answer to Q2.
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