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Answers to the previous exercise

1. Let

U =
(

1 0
0 exp(2πi5/16)

)
Find the all eigenvalues of U.
Answer: Obviously 1 and exp(2πi5/16).
2. Let |u⟩ be the eigenvector of U and assume U|u⟩ , |u⟩. Assume that we do
the phase estimation with t = 3. Then there are eight possible measurement
outcomes. Compute the probability distiribution of outcomes. I recommend
you to use Mathematica, Matlab, Maple, and so on.
Answer: By the formula, for ℓ = 0, . . . , 7, the coefficient of |ℓ⟩ after the IQFT
is

1
2t

2t−1∑
k=0

exp
(
−2πikℓ

2t

)
exp(2πikθ) =

1
2t

2t−1∑
k=0

exp(2πik(θ − ℓ/2t))

=
1
8

7∑
k=0

exp(2πik(5 − 2ℓ)/16)
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By cumbersome computation, we can see that the coefficients are
ℓ squred norm of coefficient |ℓ − 2tθ| > 3/8

−1 ≡ 7 1
64

(
1 +

(
1 +
√

2 − 2 cos
(
π
8

)
− 2 sin

(
π
8

))2
)

0.0162432 Yes

0 1
64

(
1 +

(
−1 +

√
2 − 2 cos

(
π
8

)
+ 2 sin

(
π
8

))2
)

0.022601

1 1
64

(
1 +

(
−1 +

√
2 + 2 cos

(
π
8

)
− 2 sin

(
π
8

))2
)

0.0506223

b = 2 1
64

(
1 +

(
1 +
√

2 + 2 cos
(
π
8

)
+ 2 sin

(
π
8

))2
)

0.410533

2tθ = 2.5

3 1
64

(
1 +

(
1 +
√

2 + 2 cos
(
π
8

)
+ 2 sin

(
π
8

))2
)

0.410533

4 1
64

(
1 +

(
−1 +

√
2 + 2 cos

(
π
8

)
− 2 sin

(
π
8

))2
)

0.0506223

5 1
64

(
1 +

(
−1 +

√
2 − 2 cos

(
π
8

)
+ 2 sin

(
π
8

))2
)

0.022601

6 1
64

(
1 +

(
1 +
√

2 − 2 cos
(
π
8

)
− 2 sin

(
π
8

))2
)

0.0162432 Yes

Observe that 5/16 is 0. 010︸︷︷︸
=b

1, which implies b = 2. The two nearest values

ℓ = 2, 3 to true θ have the highest probability.
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3. By using p(|m − b| > e) ≤ 1
2(e−1) compute the lower bound on the

probability of the event that the mesurement outcome of θ is within 3/8 from
the true value θ = 5/16. How much difference exists between the lower bound
and the true probability?
Answer: Since the required accuracy is 3/8, the measurement outcomes
0, 1, 2, 3, 4, 5 have the desired accuracy. The true probability is roughly 0.968.
In this case b = 010 = 2. We have to choose e = 2.
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We have to choose e = 2, because (draw a figure on the black board)

the acceptable measurement outcomes m are 0, 1, 2, 3, 4, 5,

m = 6, 7 should be included in the event |m − b| > e,

|m − b| > e is considered modulo 2t,

and e is an integer,

we have to choose e = 2. p(|m − b| ≤ e) ≥ 1 − 1/2(e − 1) = 1 − 1/2 = 1/2.
The difference between the true probability and its lower bound is
0.968 − 0.5 = 0.468.
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Factoring N

Suppose that we are given N. We assume that N is odd, and is NOT a prime
power. It can be checked by seeing if i√N is an integer for some i ≤ log3 N. In
order to break the RSA, we need this kind of computation.
Firstly randomly choose 2 ≤ x ≤ N − 1, and see if gcd(x,N) = 1. If gcd > 1,
then we have gotten a nontrivial factor of N.
Otherwise, compute the order of x modulo N, that is

ord(x,N) = min{i ≥ 1 | xi mod N = 1}

If gcd(x,N) > 1 then there is no i such that xi mod N = 1. So we have to
exclude this case first.
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Overview of the factorization procedure

Factorization by the order finding given N:

1 Choose 1 ≤ x ≤ N − 1 randomly. If gcd(x,N) > 1 then output gcd as a
factor of N.

2 Compute r = ord(x,N) (order finding).

3 Check if r is even. If r is odd, then return to Step 1.

4 Compute z = xr/2 mod N.

5 Check if z ≡ −1 (mod N). If true, then return to Step 1. By Theorem 1,
Step 1 is repeated more than once with a probability at most 1/4.

6 As a factor of N output gcd(z + 1,N) if gcd(z + 1,N) , 1, otherwise
output gcd(z − 1,N)(, 1). Theorem 2 ensures that the output is a factor.
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Supporting theorems

Theorem 1 Choose an integer x uniformly at random such that gcd(x,N) = 1
and 1 ≤ x ≤ N − 1, define r = ord(x,N). Then the probability of the event that
r is even that and xr/2 mod N , N − 1 is ≥ 3/4.
Proof. Omitted. You can find a proof in “Quantum Computation and
Quantum Information,” ISBN: 0521635039.
Assume that r is even and xr/2 mod N , N − 1. Otherwise choose x again
until the above condition is satisfied.
Theorem 2 Let z be an integer such that 2 ≤ z ≤ N − 2 and z2 mod N = 1.
Then at least one of gcd(z + 1,N) or gcd(z − 1,N) is greater than 1 and divides
N.
Proof. Omitted. You can find a proof in “Quantum Computation and
Quantum Information,” ISBN: 0521635039.
Thus, gcd(xr/2 + 1 mod N,N) or gcd(xr/2 − 1 mod N,N) is a factor of N.
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Computing the order of x modulo N

There is no known fast algorithm for computing the order of x modulo N by
digital computers. I will introduce a fast quantum algorithm.
Let 2L−1 ≤ N ≤ 2L − 1 and 0 ≤ y ≤ 2L − 1, define the unitary operator U such
that

U|y⟩ = |xy mod N⟩.

We define xy mod N = y if N ≤ y ≤ 2L − 1. The order of x modulo N is related
to the phase of eigenvalues of U as follows.
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Recall r = ord(x,N). For 0 ≤ s ≤ r − 1, define the L-qubit quantum state

|us⟩ =
1
√

r

r−1∑
k=0

exp
(
−2πisk

r

)
|xk mod N⟩.

Then we have

U|us⟩ =
1
√

r

r−1∑
k=0

exp
(
−2πisk

r

)
U|xk mod N⟩

=
1
√

r

r−1∑
k=0

exp
(
−2πisk

r

)
|xk+1 mod N⟩

=
1
√

r

r∑
k=1

exp
(
−2πis(k − 1)

r

)
|xk mod N⟩

= exp
(
2πis

r

)
1
√

r

r∑
k=1

exp
(
−2πisk

r

)
|xk mod N⟩
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U|us⟩ = exp
(
2πis

r

)
1
√

r

r∑
k=1

exp
(
−2πisk

r

)
|xk mod N⟩

= exp
(
2πis

r

)
1
√

r

r−1∑
k=0

exp
(
−2πisk

r

)
|xk mod N⟩

= exp
(
2πis

r

)
|us⟩

If we could estimate the phase of the eigenvalue of |us⟩, we would know s/r.
From which we could know r. The obstacle is that the preparation of |us⟩

requires the knowledge of r. Let us see how we can bypass this difficulty.
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Preparation for eigenvectors

1
√

r

r−1∑
s=0

|us⟩ =
1
r

r−1∑
k=0

 r−1∑
s=0

exp
(
−2πisk

r

) |xk mod N⟩ (1)

We can show that
r−1∑
s=0

exp
(
−2πisk

r

)
= rδk0. (2)

Its proof is given in the Appendix of handout.
Substitution of Eq. (2) into Eq. (1) gives

1
√

r

r−1∑
s=0

|us⟩ = |x0 mod N⟩ = |1⟩ = |0⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩ ⊗ |1⟩.
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Useful shape of probability distribution of measurement
outcomes

If we use the phase estimation algorithm with |1⟩, then we get outcomes near
to s/r with probability 1/r for s = 0, . . . , r − 1 (Draw a figure here. You are
requested to draw a similar figure in Question 6.).
In the next lecture, I will show that how to compute r from a binary fractional
ditits 0.b1b2 . . . bt that is close to s/r for some unknown 0 ≤ s ≤ r − 1.
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Exercise

1. Let N = 5 × 7 and x = 8. Compute r = ord(x,N).
2. Tell whether or not xr/2 mod N , N − 1.
3. Tell whether either gcd(N, xr/2 − 1 mod N) or gcd(N, xr/2 + 1 mod N) is a
factor of N or not.
4. Compute |us⟩ with above values and s = 1.
5. Let U be as defined in the lecture. With above x and N, what is the
eigenvalue of U to which |u1⟩ belongs?
6. Suppose that we execute the phase estimation procedure with the above U
and 1√

r

∑r−1
s=0 |us⟩ with t = 4 qubits for recording the value of a phase s/r.

There are 2t = 16 possible outcomes. Plot those 16 probabilities and observe
that outcomes corresponding to s/r for s = 0, . . . , r − 1 have higher
probabilities than the rest.
The final report will be similar to Q4–6.
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Hint for Q6

In order to find the probability distribution of outcomes of phase estimation,
we need to calculate the quantum state immediately before the measurement
in the phase estimation.
Let |vs⟩ be the quantum state before measurement when the input state to the
phase estimation is |us⟩ as visualized below:

(|0⟩ + |1⟩)⊗t

⊗

|us⟩

→

unitary ma-
nipulation
in phase
estimation

→

|vs⟩

⊗

|us⟩

→

measurement
of |vs⟩ in
phase estimation
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Because the input state to the phase estimation is 1√
r

∑r−1
s=0 |us⟩, we have

1
√

r

r−1∑
s=0

(|0⟩ + |1⟩)⊗t

⊗

|us⟩

→

unitary ma-
nipulation
in phase
estimation

→
1
√

r

r−1∑
s=0

|vs⟩

⊗

|us⟩

→

measurement
of |vs⟩ in
phase estimation

For each s = 0, . . . , r − 1, we compute |vs⟩. Since we use t = 4 qubits for the
phase estimation, We express |vs⟩ as a linear combination of |0⟩, . . . , |15⟩. Let
αs,ℓ be |vs⟩’s complex coefficient of |ℓ⟩, i.e.,

|vs⟩ =

15∑
ℓ=0

αs,ℓ|ℓ⟩.
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By Unit 9, recall that αs,ℓ is given by

1
2t

2t−1∑
k=0

[exp
(
2πi(θ − ℓ/2t)

)
]k. (3)

Warning: Some students assumed the input-output relation between |us⟩ and
|vs⟩ is linear. But it is not clear. |us⟩ has 6 = ⌈log2 35⌉ qubits while |vs⟩ has
4 = t qubits. Their relation cannot be unitary, which suggests it is not linear
either.
Thus, when the input is a linear combination of |us⟩, the output cannot be
assumed as a linear combination of |vs⟩ without a justifying explanation.

Matsumoto (Nagoya U.) QIP Course 10: Quantum Factorization Algorithm (Part 3) Sept. 2018 18 / 21



The phase estimation measures |vs⟩ and does not measure |us⟩. To compute the
probability distribution of the measurement outcomes, we need to compute
the partial trace over the quantum system containing |vs⟩, and remove |us⟩

from the quantum state. Firstly, the vector representation of output is

1
√

r

r−1∑
s=0

|vs⟩ ⊗ |us⟩.

Its matrix representation is ∑
s,s′
|vs⟩⟨vs′ | ⊗

1
r
|us⟩⟨us′ |,

whose partial trace is . . . (please do the rest by yourself). Please verify
whether the total of the probabilities is 1.
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Appendix: Proof of Eq. (2)

Let 1 ≤ k ≤ r − 1. Consider the sequence 0k mod r, k mod r, 2k mod r, . . . .
Define d = min{j ≥ 1 | jk mod r = 0}. d must divide r otherwise rk mod r
would not be zero. Moreover, jk mod r = (j + d)k mod r. Therefore,

r−1∑
s=0

exp
(
−2πisk

r

)
=

r
d

d−1∑
s=0

exp
(
−2πisk

r

)
On the other hand, if 0 ≤ j , j′ ≤ d − 1 then jk mod r , j′k mod r, otherwise
(j − j′)k mod r = 0, which is a contradiction to the minimality of d. This
means that

exp
(
−2πi0k

r

)
, exp

(
−2πi1k

r

)
, . . . , exp

(
−2πi(d − 1)k

r

)
are pairwise distinct roots of Xd − 1 = 0.
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Xd − 1 =

d−1∏
s=0

(X − exp
(
−2πisk

r

)
)

= Xd +

d−1∑
s=0

exp
(
−2πisk

r

)
Xd−1 + · · · − 1.

This means that
d−1∑
s=0

exp
(
−2πisk

r

)
= 0.
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