## QIP Course 9: Quantum Factorization Algorithm (Part 2)

#### Ryutaroh Matsumoto

Nagoya University, Japan Send your comments to ryutaroh.matsumoto@nagoya-u.jp

> September 2018 @ Tokyo Tech.

Materials presented here can by reused under the Creative Commons Attribution 4.0 International License

https://creativecommons.org/licenses/by/4.0.



### Inverse QFT

Answers to the previous exercises will be given on the blackboard.

Let  $|0\rangle, \ldots, |N-1\rangle$  be an orthonormal basis of an *N*-dimensional space. The QFT transforms

$$|j\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \exp(2\pi i j k/N) |k\rangle.$$

The inverse of QFT (IQFT) is given by

$$k\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} \exp(-2\pi i k \ell / N) |\ell\rangle.$$
 (1)

IQFT can be realized by applying  $R_k^{-1}$  and  $H^{-1}$  in the reverse order.  $\Rightarrow$  IQFT can also be realized with the same efficiency (n(n + 1)/2 operations)of  $R_k^{-1}$  and  $H^{-1}$ ) as QFT. Suppose that we have a unitary matrix U and its eigenvector vector  $|u\rangle$ . Let  $\exp(2\pi i\theta)$  be the eigenvalue to which  $|u\rangle$  belongs to. We shall show how we can compute  $\theta$ .

Assumption: We are able to do the controlled- $U^{2^j}$  operation for any  $j \ge 0$ . Suppose that we apply the controlled- $U^{2^j}$  to  $(|0\rangle + |1\rangle)|u\rangle$ , with  $|u\rangle$  being the target (we omit the normalizing factor  $1/\sqrt{2}$ ). Then the result is

$$|0\rangle|u\rangle + |1\rangle \otimes U^{2'}|u\rangle$$
  
=  $|0\rangle|u\rangle + |1\rangle \otimes \exp(2\pi i 2^{j}\theta)|u\rangle$   
=  $(|0\rangle + \exp(2\pi i 2^{j}\theta)|1\rangle) \otimes |u\rangle$ 

Assume we have *t* qubits that are initialized to  $(|0\rangle + |1\rangle)/\sqrt{2}$ , and apply the controlled- $U^{2^{j}}$  to the *j*-th qubit (the rightmost is the zero-th). The result is

$$\frac{1}{2^{t/2}}(|0\rangle + \exp(2\pi i 2^{t-1}\theta)|1\rangle) \otimes \cdots \otimes (|0\rangle + \exp(2\pi i 2^{0}\theta)|1\rangle)$$
$$= \frac{1}{2^{t/2}} \sum_{k=0}^{2^{t}-1} \exp(2\pi i k\theta)|k\rangle.$$
(2)

Applying the IQFT (1) to (2) yields

$$\frac{1}{2^t}\sum_{\ell=0}^{2^t-1}\sum_{k=0}^{2^t-1}\exp\left(\frac{-2\pi ik\ell}{2^t}\right)\exp(2\pi ik\theta)|\ell\rangle.$$

#### Probability distribution of the measurement outcomes 1

$$\frac{1}{2^t}\sum_{\ell=0}^{2^t-1}\sum_{k=0}^{2^t-1}\exp\left(\frac{-2\pi ik\ell}{2^t}\right)\exp(2\pi ik\theta)|\ell\rangle.$$

We shall compute the probability distribution of the mesurement in the { $|0\rangle$ ,  $|1\rangle$ ,  $|2\rangle$ , ...,  $|2^t - 1\rangle$ } basis. (The observable is  $\sum_{j=0}^{2^t-1} j|j\rangle\langle j|$ .) Recall that  $0 \le \theta < 1$ , and we can write

$$\theta = 0.b_1b_2\cdots b_tb_{t+1}\cdots$$

Let  $b = b_1 b_2 \cdots b_t$ . We have  $0 \le b \le 2^t - 1$ . *b* is the nearest *t*-bit integer  $\le 2^t \theta$ . When *m* is the measurement outcome, we regard  $m/2^t$  as our estimate of  $\theta$ . I will explain that  $m \simeq 2^t \theta \simeq 2^t b$  with large probability.

$$\frac{1}{2^t}\sum_{\ell=0}^{2^t-1}\sum_{k=0}^{2^t-1}\exp\left(\frac{-2\pi ik\ell}{2^t}\right)\exp(2\pi ik\theta)|\ell\rangle.$$

Let  $\alpha_c$  be the coefficient of  $|(b + c) \mod 2^t \rangle$  in the result of the IQFT (the above). We shall show that if *c* is large then  $|\alpha_c|$  is small. Observe that the coefficient of  $|\ell\rangle$  is

$$\frac{1}{2^{t}} \sum_{k=0}^{2^{t}-1} \exp\left(\frac{-2\pi i k \ell}{2^{t}}\right) \exp(2\pi i k \theta) = \frac{1}{2^{t}} \sum_{k=0}^{2^{t}-1} \left[\exp\left(2\pi i (\theta - \ell/2^{t})\right)\right]^{k}$$

Substituting  $\ell$  with b + c we have

$$\alpha_{c} = \frac{1}{2^{t}} \sum_{k=0}^{2^{t}-1} [\exp(2\pi i(\theta - (b+c)/2^{t}))]^{k}$$

$$\alpha_{c} = \frac{1}{2^{t}} \sum_{k=0}^{2^{t}-1} [\exp\left(2\pi i(\theta - (b+c)/2^{t})\right)]^{k}$$

is the sum of a geometric series, so it is equal to

$$\alpha_c = \frac{1}{2^t} \cdot \frac{1 - \exp(2\pi i (2^t \theta - (b+c)))}{1 - \exp(2\pi i (\theta - (b+c)/2^t))}.$$

Define  $\delta = \theta - b/2^t$ , then

$$\alpha_c = \frac{1}{2^t} \cdot \frac{1 - \exp(2\pi i (2^t \delta - c))}{1 - \exp(2\pi i (\delta - c/2^t))}$$

We shall upper bound the probability of getting a measurement outcome *m* such that |m - b| > e. Observe  $Pr[m = b + c] = |\alpha_c|^2$ .

We shall upper bound the probability of getting a measurement outcome *m* such that |m - b| > e. We have

$$p(|m-b| > e) = \sum_{-2^{t-1} < c \le -e-1, e+1 \le c < 2^{t-1}} |\alpha_c|^2.$$

Since  $|1 - \exp(ix)| \le 2$ ,

$$|\alpha_c| \le \frac{2}{2^t |1 - \exp(2\pi i (\delta - c/2^t))|}.$$

We have  $|1 - \exp(ix)| \ge 2|x|/\pi$  for  $-\pi \le x \le \pi$  and  $-\pi \le 2\pi(\delta - c/2^t) \le \pi$ , it follows

$$|\alpha_c| \le \frac{1}{2^{t+1}|\delta - c/2^t|}.$$

Therefore we have

$$\begin{aligned} 4p(|m-b| > e) &\leq \sum_{-2^{t-1} < c \leq -e-1} \frac{1}{(2^t \delta - c)^2} + \sum_{e+1 \leq c < 2^{t-1}} \frac{1}{(2^t \delta - c)^2} \\ &\leq \sum_{-2^{t-1} < c \leq -e-1} \frac{1}{c^2} + \sum_{e+1 \leq c < 2^{t-1}} \frac{1}{(c-1)^2} \\ &\leq 2 \sum_{e \leq c < 2^{t-1}-1} \frac{1}{c^2} \\ &\leq 2 \int_{e-1}^{2^{t-1}-1} \frac{dc}{c^2} \\ &\leq 2 \int_{e-1}^{\infty} \frac{dc}{c^2} \\ &= \frac{2}{(e-1)}. \end{aligned}$$

# Sufficiently many qubits ensure the accuracy with high probability

Suppose that we want an accuracy of  $2^{-n}$ , that is,  $|\theta - m/2^t| < 2^{-n}$ .

$$\begin{aligned} |\theta - m/2^t| &< 2^{-n} \\ \Leftrightarrow & |2^t \theta - m| &< 2^{t-n} \\ \Leftarrow & |b - m| &< 2^{t-n} - 1. \end{aligned}$$

We can see that  $e = 2^{t-n} - 1$  ensures the desired accuracy. The probability of the accuracy below  $2^{-n}$  is  $1/2(2^{t-n} - 2)$ . In order for  $1/2(2^{t-n} - 2) < \epsilon$ , we need  $t \ge n + \log_2(2 + 1/2\epsilon)$ .

1. Let

$$U = \left( \begin{array}{cc} 1 & 0 \\ 0 & \exp(2\pi i 5/16) \end{array} \right)$$

Find the all eigenvalues of U.

2. Let  $|u\rangle$  be the eigenvector of U and assume  $U|u\rangle \neq |u\rangle$ . Assume that we do the phase estimation with t = 3. Then there is eight possible measurement outcomes. Compute the probability distiribution of outcomes **and their corresponding estimates of**  $\theta$ . I recommend you to use Mathematica, Matlab, Maple, and so on.

3. By using  $p(|m - b| > e) \le \frac{1}{2(e-1)}$  compute the lower bound on the probability of the event that the mesurement outcome of  $\theta$  is within 3/8 from the true value  $\theta = 5/16$ . How much difference exists between the lower bound and the true probability?