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Inverse QFT

Answers to the previous exercises will be given on the blackboard.

Let |0⟩, . . . , |N − 1⟩ be an orthonormal basis of an N-dimensional space. The
QFT transforms

|j⟩ 7→
1
√

N

N−1∑
k=0

exp(2πijk/N)|k⟩.

The inverse of QFT (IQFT) is given by

|k⟩ 7→
1
√

N

N−1∑
ℓ=0

exp(−2πikℓ/N)|ℓ⟩. (1)

IQFT can be realized by applying R−1
k and H−1 in the reverse order.

⇒ IQFT can also be realized with the same efficiency (n(n + 1)/2 operations
of R−1

k and H−1) as QFT.
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Phase estimation 1

Suppose that we have a unitary matrix U and its eigenvector vector |u⟩. Let
exp(2πiθ) be the eigenvalue to which |u⟩ belongs to. We shall show how we
can compute θ.
Assumption: We are able to do the controlled-U2j

operation for any j ≥ 0.
Suppose that we apply the controlled-U2j

to (|0⟩ + |1⟩)|u⟩, with |u⟩ being the
target (we omit the normalizing factor 1/

√
2). Then the result is

|0⟩|u⟩ + |1⟩ ⊗ U2j
|u⟩

= |0⟩|u⟩ + |1⟩ ⊗ exp(2πi2jθ)|u⟩

= (|0⟩ + exp(2πi2jθ)|1⟩) ⊗ |u⟩
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Assume we have t qubits that are initialized to (|0⟩ + |1⟩)/
√

2, and apply the
controlled-U2j

to the j-th qubit (the rightmost is the zero-th). The result is

1
2t/2 (|0⟩ + exp(2πi2t−1θ)|1⟩) ⊗ · · · ⊗ (|0⟩ + exp(2πi20θ)|1⟩)

=
1

2t/2

2t−1∑
k=0

exp(2πikθ)|k⟩. (2)

Applying the IQFT (1) to (2) yields

1
2t

2t−1∑
ℓ=0

2t−1∑
k=0

exp
(
−2πikℓ

2t

)
exp(2πikθ)|ℓ⟩.
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Probability distribution of the measurement outcomes 1

1
2t

2t−1∑
ℓ=0

2t−1∑
k=0

exp
(
−2πikℓ

2t

)
exp(2πikθ)|ℓ⟩.

We shall compute the probability distribution of the mesurement in the {|0⟩,
|1⟩, |2⟩, . . . , |2t − 1⟩} basis. (The observable is

∑2t−1
j=0 j|j⟩⟨j|.) Recall that

0 ≤ θ < 1, and we can write

θ = 0.b1b2 · · · btbt+1 · · · .

Let b = b1b2 · · · bt. We have 0 ≤ b ≤ 2t − 1. b is the nearest t-bit integer
≤ 2tθ. When m is the measurement outcome, we regard m/2t as our
estimate of θ. I will explain that m ≃ 2tθ ≃ 2tb with large probability.

Matsumoto (Nagoya U.) QIP Course 9: Quantum Factorization Algorithm (Part 2) Sept. 2018 6 / 12



1
2t

2t−1∑
ℓ=0

2t−1∑
k=0

exp
(
−2πikℓ

2t

)
exp(2πikθ)|ℓ⟩.

Let αc be the coefficient of |(b + c) mod 2t⟩ in the result of the IQFT (the
above). We shall show that if c is large then |αc| is small. Observe that the
coefficient of |ℓ⟩ is

1
2t

2t−1∑
k=0

exp
(
−2πikℓ

2t

)
exp(2πikθ) =

1
2t

2t−1∑
k=0

[exp
(
2πi(θ − ℓ/2t)

)
]k

Substituting ℓ with b + c we have

αc =
1
2t

2t−1∑
k=0

[exp
(
2πi(θ − (b + c)/2t)

)
]k
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αc =
1
2t

2t−1∑
k=0

[exp
(
2πi(θ − (b + c)/2t)

)
]k

is the sum of a geometric series, so it is equal to

αc =
1
2t ·

1 − exp(2πi(2tθ − (b + c)))
1 − exp(2πi(θ − (b + c)/2t))

.

Define δ = θ − b/2t, then

αc =
1
2t ·

1 − exp(2πi(2tδ − c))
1 − exp(2πi(δ − c/2t))

We shall upper bound the probability of getting a measurement outcome m
such that |m − b| > e. Observe Pr[m = b + c] = |αc|

2.

Matsumoto (Nagoya U.) QIP Course 9: Quantum Factorization Algorithm (Part 2) Sept. 2018 8 / 12



We shall upper bound the probability of getting a measurement outcome m
such that |m − b| > e. We have

p(|m − b| > e) =
∑

−2t−1<c≤−e−1,e+1≤c<2t−1

|αc|
2.

Since |1 − exp(ix)| ≤ 2,

|αc| ≤
2

2t|1 − exp(2πi(δ − c/2t))|
.

We have |1 − exp(ix)| ≥ 2|x|/π for −π ≤ x ≤ π and −π ≤ 2π(δ − c/2t) ≤ π, it
follows

|αc| ≤
1

2t+1|δ − c/2t|
.
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Therefore we have

4p(|m − b| > e) ≤
∑

−2t−1<c≤−e−1

1
(2tδ − c)2 +

∑
e+1≤c<2t−1

1
(2tδ − c)2

≤
∑

−2t−1<c≤−e−1

1
c2 +

∑
e+1≤c<2t−1

1
(c − 1)2

≤ 2
∑

e≤c<2t−1−1

1
c2

≤ 2
∫ 2t−1−1

e−1

dc
c2

≤ 2
∫ ∞

e−1

dc
c2

=
2

(e − 1)
.
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Sufficiently many qubits ensure the accuracy with high
probability

Suppose that we want an accuracy of 2−n, that is, |θ − m/2t| < 2−n.

|θ − m/2t| < 2−n

⇔ |2tθ − m| < 2t−n

⇐ |b − m| < 2t−n − 1.

We can see that e = 2t−n − 1 ensures the desired accuracy. The probability of
the accuracy below 2−n is 1/2(2t−n − 2). In order for 1/2(2t−n − 2) < ϵ, we
need t ≥ n + log2(2 + 1/2ϵ).
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Exercise

1. Let

U =
(

1 0
0 exp(2πi5/16)

)
Find the all eigenvalues of U.
2. Let |u⟩ be the eigenvector of U and assume U|u⟩ , |u⟩. Assume that we do
the phase estimation with t = 3. Then there is eight possible measurement
outcomes. Compute the probability distiribution of outcomes and their
corresponding estimates of θ. I recommend you to use Mathematica,
Matlab, Maple, and so on.
3. By using p(|m − b| > e) ≤ 1

2(e−1) compute the lower bound on the
probability of the event that the mesurement outcome of θ is within 3/8 from
the true value θ = 5/16. How much difference exists between the lower bound
and the true probability?
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