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Inverse QFT

Answers to the previous exercises will be given on the blackboard.

Let [0), ..., |N — 1) be an orthonormal basis of an N-dimensional space. The
QFT transforms

1 N-1
j R 2rijk/N)|k).
iy W;exm wijk/N)Ik)

The inverse of QFT (IQFT) is given by

N-1
k) - % ; exp(=2nikl/N)|£). (1)

IQFT can be realized by applying R;l and H~! in the reverse order.

= IQFT can also be realized with the same efficiency (n(n + 1)/2 operations
ofR,;1 and H™!) as QFT.
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Phase estimation 1

Suppose that we have a unitary matrix U and its eigenvector vector |u). Let
exp(2mif) be the eigenvalue to which |u) belongs to. We shall show how we
can compute 6. .

Assumption: We are able to do the controlled-U % operation for any j > 0.
Suppose that we apply the controlled-U? to (|0) + |1))|u), with |u) being the
target (we omit the normalizing factor 1/ V2). Then the result is

10y + 1) ® U Jury
0Yu) + 1) ® exp(27i2/0)|u)
(10) + expRriZ6)|1)) ® |u)
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Assume we have 7 qubits that are initialized to (|0) + |1))/ V2, and apply the
controlled-U? to the j-th qubit (the rightmost is the zero-th). The result is

5 /2 ——(10) + exp(2ri2"~'9)|1)) ® - - - ® (|0) + exp(2mi2°6)[1))

2!-1

1
= >m Z exp(2rikd) k). 2)
k=0

Applying the IQFT (F) to (&) yields

L3 S e[

t=0 k=0

) exp(2nik6)|L).
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Probability distribution of the measurement outcomes 1

e ikt
5 Z Z exp( o )exp(2mk0)|€)

=0 k=0

We shall compute the probability distribution of the mesurement in the {|0),

(1), |2), ..., |2" — 1)} basis. (The observable is 22 01J|]><]| ) Recall that
0 <6 < 1, and we can write

6= 0.b1b2 te bth.l s

Letb = b1by---b,. We have 0 < b < 2! — 1. b is the nearest ¢-bit integer
< 2. When m is the measurement outcome, we regard m/2' as our
estimate of 6. I will explain that m ~ 2’0 ~ 2'b with large probability.
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13339 (=2nikt _
> Z Z exp T exp(2nik6)|£).

=0 k=0

Let . be the coeflicient of (b + ¢) mod 27 in the result of the IQFT (the
above). We shall show that if ¢ is large then || is small. Observe that the
coefficient of |£) is

1 2'-1 2!-1

—2mikl i 1 .
5 Z exp (T) expQrikt) = ;[exp (20 - €/2)*

k=0
Substituting € with b + ¢ we have

201
@, = % Z[exp (27i(0 — (b + )/2)1*
k=0
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2!-1
= % 2 [exp (2mi(6 - (b + o)/2))1f
k=0

is the sum of a geometric series, so it is equal to

L1 1 expmi29— (b + )

20 1—expni(6 — (b +¢)/2)

Define § = 6 — b/2!, then

1 1-exp2ni(2's - ¢))
2t 1 —exp(2mi(6 — ¢/2%))

Qe =

We shall upper bound the probability of getting a measurement outcome m
such that |m — b| > e. Observe Pr[m = b + c] = |a.[*.
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We shall upper bound the probability of getting a measurement outcome m
such that [m — b| > e. We have

2
pm —b| > €) = > el
2-lce<—e—1,e+1<c<21
Since |1 — exp(ix)| < 2,

2
< .
< 211 — exp(2mi(6 — ¢/2"))]

|,

We have |1 — exp(ix)| > 2|x|/x for —n < x < wand -7 < 27(6 — ¢/2") < 7, it

follows |

[ —
el < 21+1|5 —c/2!|
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Therefore we have

4p(m - b > e)

IA

IA

IA

IA

IA

1
Z (216 — ¢)? " Z

—2-l<c<—e—1 e+1<e<2r!

1 1
Z 2"t Z (c—1)?

—2-l<e<—e—1 e+1<c<2i-1

1
2 > =
e<c<2-1-1
21711
d
2f &«
e—1 02
< d
2f <
e-1 C

2

(e-1)
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Sufficiently many qubits ensure the accuracy with high

probability

Suppose that we want an accuracy of 27", that is, |§ — m/2'| < 27".

6 —m/2"| <27"
& [20-m| <2
& |b-m<27"-1.

We can see that e = 2" — 1 ensures the desired accuracy. The probability of
the accuracy below 27" is 1/2(2"™" — 2). In order for 1/2(2"™" - 2) < €, we
need t > n +1og,(2 + 1/2¢).
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Exercise

1. Let

1 0
v :( 0 exp(27i5/16) )

Find the all eigenvalues of U.

2. Let |u) be the eigenvector of U and assume Ulu) # |u). Assume that we do
the phase estimation with ¢ = 3. Then there is eight possible measurement
outcomes. Compute the probability distiribution of outcomes and their
corresponding estimates of 6. | recommend you to use Mathematica,
Matlab, Maple, and so on.

3. By using p(lm — b| > e) < 2(6 1y compute the lower bound on the
probability of the event that the mesurement outcome of 6 is within 3/8 from
the true value 8 = 5/16. How much difference exists between the lower bound
and the true probability?
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