QIP Course 9: Quantum Factorization Algorithm (Part 2)

Ryutaroh Matsumoto

Nagoya University, Japan
Send your comments to ryutaroh.matsumoto@nagoya-u.jp

September 2018
@ Tokyo Tech.

Acknowledgment and Copyright

Materials presented here can by reused under the Creative Commons Attribution4, 0International License

Inverse QFT

Answers to the previous exercises will be given on the blackboard.
Let $|0\rangle, \ldots,|N-1\rangle$ be an orthonormal basis of an N-dimensional space. The QFT transforms

$$
|j\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \exp (2 \pi i j k / N)|k\rangle
$$

The inverse of QFT (IQFT) is given by

$$
\begin{equation*}
|k\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} \exp (-2 \pi i k \ell / N)|\ell\rangle \tag{1}
\end{equation*}
$$

IQFT can be realized by applying R_{k}^{-1} and H^{-1} in the reverse order. \Rightarrow IQFT can also be realized with the same efficiency $(n(n+1) / 2$ operations of R_{k}^{-1} and H^{-1}) as QFT.

Phase estimation 1

Suppose that we have a unitary matrix U and its eigenvector vector $|u\rangle$. Let $\exp (2 \pi i \theta)$ be the eigenvalue to which $|u\rangle$ belongs to. We shall show how we can compute θ.
Assumption: We are able to do the controlled- $U^{2^{j}}$ operation for any $j \geq 0$. Suppose that we apply the controlled- $U^{2^{j}}$ to $(|0\rangle+|1\rangle)|u\rangle$, with $|u\rangle$ being the target (we omit the normalizing factor $1 / \sqrt{2}$). Then the result is

$$
\begin{aligned}
& |0\rangle|u\rangle+|1\rangle \otimes U^{2^{j}}|u\rangle \\
= & |0\rangle|u\rangle+|1\rangle \otimes \exp \left(2 \pi i 2^{j} \theta\right)|u\rangle \\
= & \left(|0\rangle+\exp \left(2 \pi i 2^{j} \theta\right)|1\rangle\right) \otimes|u\rangle
\end{aligned}
$$

Assume we have t qubits that are initialized to $(|0\rangle+|1\rangle) / \sqrt{2}$, and apply the controlled- $U^{2^{j}}$ to the j-th qubit (the rightmost is the zero-th). The result is

$$
\begin{align*}
& \frac{1}{2^{t / 2}}\left(|0\rangle+\exp \left(2 \pi i 2^{t-1} \theta\right)|1\rangle\right) \otimes \cdots \otimes\left(|0\rangle+\exp \left(2 \pi i 2^{0} \theta\right)|1\rangle\right) \\
= & \frac{1}{2^{t / 2}} \sum_{k=0}^{2^{t}-1} \exp (2 \pi i k \theta)|k\rangle . \tag{2}
\end{align*}
$$

Applying the IQFT to to yields

$$
\frac{1}{2^{t}} \sum_{\ell=0}^{2^{t}-1} \sum_{k=0}^{2^{t}-1} \exp \left(\frac{-2 \pi i k \ell}{2^{t}}\right) \exp (2 \pi i k \theta)|\ell\rangle
$$

Probability distribution of the measurement outcomes 1

$$
\frac{1}{2^{t}} \sum_{\ell=0}^{2^{t}-1} \sum_{k=0}^{2^{t}-1} \exp \left(\frac{-2 \pi i k \ell}{2^{t}}\right) \exp (2 \pi i k \theta)|\ell\rangle
$$

We shall compute the probability distribution of the mesurement in the $\{|0\rangle$, $\left.|1\rangle,|2\rangle, \ldots,\left|2^{t}-1\right\rangle\right\}$ basis. (The observable is $\sum_{j=0}^{2^{t}-1} j|j\rangle\langle j|$.) Recall that $0 \leq \theta<1$, and we can write

$$
\theta=0 . b_{1} b_{2} \cdots b_{t} b_{t+1} \cdots
$$

Let $b=b_{1} b_{2} \cdots b_{t}$. We have $0 \leq b \leq 2^{t}-1 . b$ is the nearest t-bit integer $\leq 2^{t} \theta$. When m is the measurement outcome, we regard $m / 2^{t}$ as our estimate of θ. I will explain that $m \simeq 2^{t} \theta \simeq 2^{t} b$ with large probability.

$$
\frac{1}{2^{t}} \sum_{\ell=0}^{2^{t}-1} \sum_{k=0}^{2^{t}-1} \exp \left(\frac{-2 \pi i k \ell}{2^{t}}\right) \exp (2 \pi i k \theta)|\ell\rangle
$$

Let α_{c} be the coefficient of $\left|(b+c) \bmod 2^{t}\right\rangle$ in the result of the IQFT (the above). We shall show that if c is large then $\left|\alpha_{c}\right|$ is small. Observe that the coefficient of $|\ell\rangle$ is

$$
\frac{1}{2^{t}} \sum_{k=0}^{2^{t}-1} \exp \left(\frac{-2 \pi i k \ell}{2^{t}}\right) \exp (2 \pi i k \theta)=\frac{1}{2^{t}} \sum_{k=0}^{2^{t}-1}\left[\exp \left(2 \pi i\left(\theta-\ell / 2^{t}\right)\right)\right]^{k}
$$

Substituting ℓ with $b+c$ we have

$$
\alpha_{c}=\frac{1}{2^{t}} \sum_{k=0}^{2^{t}-1}\left[\exp \left(2 \pi i\left(\theta-(b+c) / 2^{t}\right)\right)\right]^{k}
$$

$$
\alpha_{c}=\frac{1}{2^{t}} \sum_{k=0}^{2^{t}-1}\left[\exp \left(2 \pi i\left(\theta-(b+c) / 2^{t}\right)\right)\right]^{k}
$$

is the sum of a geometric series, so it is equal to

$$
\alpha_{c}=\frac{1}{2^{t}} \cdot \frac{1-\exp \left(2 \pi i\left(2^{t} \theta-(b+c)\right)\right)}{1-\exp \left(2 \pi i\left(\theta-(b+c) / 2^{t}\right)\right)} .
$$

Define $\delta=\theta-b / 2^{t}$, then

$$
\alpha_{c}=\frac{1}{2^{t}} \cdot \frac{1-\exp \left(2 \pi i\left(2^{t} \delta-c\right)\right)}{1-\exp \left(2 \pi i\left(\delta-c / 2^{t}\right)\right)}
$$

We shall upper bound the probability of getting a measurement outcome m such that $|m-b|>e$. Observe $\operatorname{Pr}[m=b+c]=\left|\alpha_{c}\right|^{2}$.

We shall upper bound the probability of getting a measurement outcome m such that $|m-b|>e$. We have

$$
p(|m-b|>e)=\sum_{-2^{t-1}<c \leq-e-1, e+1 \leq c<2^{t-1}}\left|\alpha_{c}\right|^{2}
$$

Since $|1-\exp (i x)| \leq 2$,

$$
\left|\alpha_{c}\right| \leq \frac{2}{2^{t}\left|1-\exp \left(2 \pi i\left(\delta-c / 2^{t}\right)\right)\right|}
$$

We have $|1-\exp (i x)| \geq 2|x| / \pi$ for $-\pi \leq x \leq \pi$ and $-\pi \leq 2 \pi\left(\delta-c / 2^{t}\right) \leq \pi$, it follows

$$
\left|\alpha_{c}\right| \leq \frac{1}{2^{t+1}\left|\delta-c / 2^{t}\right|} .
$$

Therefore we have

$$
\begin{aligned}
4 p(|m-b|>e) & \leq \sum_{-2^{t-1}<c \leq-e-1} \frac{1}{\left(2^{t} \delta-c\right)^{2}}+\sum_{e+1 \leq c<2^{t-1}} \frac{1}{\left(2^{t} \delta-c\right)^{2}} \\
& \leq \sum_{-2^{t-1}<c \leq-e-1} \frac{1}{c^{2}}+\sum_{e+1 \leq c<2^{t-1}} \frac{1}{(c-1)^{2}} \\
& \leq 2 \sum_{e \leq c<2^{t-1}-1} \frac{1}{c^{2}} \\
& \leq 2 \int_{e-1}^{2^{t-1}-1} \frac{d c}{c^{2}} \\
& \leq 2 \int_{e-1}^{\infty} \frac{d c}{c^{2}} \\
& =\frac{2}{(e-1)} .
\end{aligned}
$$

Sufficiently many qubits ensure the accuracy with high probability

Suppose that we want an accuracy of 2^{-n}, that is, $\left|\theta-m / 2^{t}\right|<2^{-n}$.

$$
\begin{aligned}
& \left|\theta-m / 2^{t}\right|<2^{-n} \\
\Leftrightarrow & \left|2^{t} \theta-m\right|<2^{t-n} \\
\Leftarrow & |b-m|<2^{t-n}-1 .
\end{aligned}
$$

We can see that $e=2^{t-n}-1$ ensures the desired accuracy. The probability of the accuracy below 2^{-n} is $1 / 2\left(2^{t-n}-2\right)$. In order for $1 / 2\left(2^{t-n}-2\right)<\epsilon$, we need $t \geq n+\log _{2}(2+1 / 2 \epsilon)$.

Exercise

1. Let

$$
U=\left(\begin{array}{cc}
1 & 0 \\
0 & \exp (2 \pi i 5 / 16)
\end{array}\right)
$$

Find the all eigenvalues of U.
2. Let $|u\rangle$ be the eigenvector of U and assume $U|u\rangle \neq|u\rangle$. Assume that we do the phase estimation with $t=3$. Then there is eight possible measurement outcomes. Compute the probability distiribution of outcomes and their corresponding estimates of θ. I recommend you to use Mathematica, Matlab, Maple, and so on.
3. By using $p(|m-b|>e) \leq \frac{1}{2(e-1)}$ compute the lower bound on the probability of the event that the mesurement outcome of θ is within $3 / 8$ from the true value $\theta=5 / 16$. How much difference exists between the lower bound and the true probability?

