QIP Course 5: Quantum Superdense Coding

Ryutaroh Matsumoto

Nagoya University, Japan
Send your comments to ryutaroh.matsumoto@nagoya-u.jp

August 2018
@ Tokyo Tech.

Copyright

Materials presented here can by reused under the Creative Commons Attribution-4^0_International License https://creativecommons.org/licenses/by/4.0.

Partial answers to the exercises

$$
\begin{aligned}
Z_{1} & =|0\rangle\langle 0|-|1\rangle\langle 1|, \\
Z_{1} \otimes I \otimes I & =|0\rangle\langle 0| \otimes I \otimes I-|1\rangle\langle 1| \otimes I \otimes I
\end{aligned}
$$

Define

$$
\begin{aligned}
|\Phi\rangle= & \frac{1}{2}[|00\rangle(\alpha|0\rangle+\beta|1\rangle)+|01\rangle(\alpha|1\rangle+\beta|0\rangle)+ \\
& |10\rangle(\alpha|0\rangle-\beta|1\rangle)+|11\rangle(\alpha|1\rangle-\beta|0\rangle)]
\end{aligned}
$$

Here we start computing the probability of getting outcome +1 by measuring Z_{1} and the state after it.

$$
\begin{aligned}
(|0\rangle\langle 0| \otimes I \otimes I) 2|\Phi\rangle= & (|0\rangle\langle 0| \otimes I \otimes I) \\
& {[|00\rangle(\alpha|0\rangle+\beta|1\rangle)+|01\rangle(\alpha|1\rangle+\beta|0\rangle)+} \\
& |10\rangle(\alpha|0\rangle-\beta|1\rangle)+|11\rangle(\alpha|1\rangle-\beta|0\rangle)]
\end{aligned}
$$

Since $|0\rangle\langle 0 \| 0\rangle=|0\rangle$ and $|0\rangle\langle 0 \| 1\rangle=0$, we have

$$
\begin{array}{ll}
(|0\rangle\langle 0| \otimes I \otimes I)|00\rangle(\alpha|0\rangle+\beta|1\rangle) & =\text { unchanged, } \\
(|0\rangle\langle 0| \otimes I \otimes I)|01\rangle(\alpha|1\rangle+\beta|0\rangle) & =\text { unchanged, } \\
(|0\rangle\langle 0| \otimes I \otimes I)|10\rangle(\alpha|0\rangle-\beta|1\rangle) & =0 \\
(|0\rangle\langle 0| \otimes I \otimes I)|11\rangle(\alpha|1\rangle-\beta|0\rangle) & =0
\end{array}
$$

Thus,

$$
(|0\rangle\langle 0| \otimes I \otimes I)|\Phi\rangle=\frac{1}{2}[\underbrace{|00\rangle(\alpha|0\rangle+\beta|1\rangle)}_{\text {length } 1}+\underbrace{|01\rangle(\alpha|1\rangle+\beta|0\rangle)}_{\text {length } 1}],
$$

and its squared norm is 0.5 , because the two terms in the last line are orthogonal to each other.
Therefore,

- the probability of getting +1 on measuring the observable Z_{1} of the leftmost qubit is 0.5 , and
- the state after measurement is

$$
\left|\Phi_{2}\right\rangle=\frac{1}{\sqrt{2}}[|00\rangle(\alpha|0\rangle+\beta|1\rangle)+|01\rangle(\alpha|1\rangle+\beta|0\rangle)] .
$$

Here we start computing the conditional probability of getting outcome -1 by measuring Z_{2} and the state after it.

$$
\begin{aligned}
& I \otimes Z_{2} \otimes I=I \otimes|0\rangle\langle 0| \otimes I-I \otimes|1\rangle\langle 1| \otimes I \\
& (I \otimes|0\rangle\langle 0| \otimes I) \sqrt{2}\left|\Phi_{2}\right\rangle \\
= & (I \otimes|0\rangle\langle 0| \otimes I)[|00\rangle(\alpha|0\rangle+\beta|1\rangle)+|01\rangle(\alpha|1\rangle+\beta|0\rangle)]
\end{aligned}
$$

Since $|0\rangle\langle 0 \| 0\rangle=|0\rangle$ and $|0\rangle\langle 0 \| 1\rangle=0$, we have

$$
\begin{array}{ll}
(I \otimes|0\rangle\langle 0| \otimes I)|00\rangle(\alpha|0\rangle+\beta|1\rangle) & =\text { unchanged, } \\
(I \otimes|0\rangle\langle 0| \otimes I)|01\rangle(\alpha|1\rangle+\beta|0\rangle) & =0
\end{array}
$$

Thus,

$$
(I \otimes|0\rangle\langle 0| \otimes I)\left|\Phi_{2}\right\rangle=\frac{1}{\sqrt{2}}[|00\rangle(\alpha|0\rangle+\beta|1\rangle)],
$$

and its squared norm is 0.5 .
Therefore,

- the probability of getting +1 on measuring the observable Z_{2} of the middle qubit is 0.5 , and
- the state after measurement is

$$
|00\rangle(\alpha|0\rangle+\beta|1\rangle) .
$$

Observe that the joint probability of the measurement outcome $(+1,+1)$ of $\left(Z_{1}, Z_{2}\right)$ is $0.5 \times 0.5=0.25$.

Superdense coding

1 qubit can carry at most 1 bit of information.

\Uparrow

Since 2×2 matrix has at most 2 eigenvalues, the number of measurement outcomes of measuring 1 qubit is at most 2 .

Superdense coding sends 2 bits of information by sending 1 qubit.

- The sender and receiver are spatially apart.
- They share

$$
\frac{|00\rangle+|11\rangle}{\sqrt{2}} .
$$

Orthogonal states can be distinguished

$\left\{\left|\varphi_{1}\right\rangle, \ldots,\left|\varphi_{n}\right\rangle\right\}$: orthonormal basis of a linear space \mathcal{H}. If we know the state of a system is in one of $\left\{\left|\varphi_{1}\right\rangle, \ldots,\left|\varphi_{n}\right\rangle\right\}$, then we can distinguish them, as follows:

$$
\begin{equation*}
A=\sum_{k=1}^{n} k\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right| \tag{1}
\end{equation*}
$$

- A is a Hermitian matrix.
- If the state is one of $\left\{\left|\varphi_{1}\right\rangle, \ldots,\left|\varphi_{n}\right\rangle\right\}$, then we can distinguish them by measuring A.
More formally, the state before measurement is $\left|\varphi_{k}\right\rangle$ if and only if the measurement outcome is k (Excercise).

Superdense coding 2

The sender applies either I, X, Z, or $X Z$ to his physical system. This color represents the sender and this color represents the receiver.

$$
\begin{align*}
(X \otimes I) \frac{|00\rangle+|11\rangle}{\sqrt{2}} & =\frac{|10\rangle+|01\rangle}{\sqrt{2}} \tag{2}\\
(Z \otimes I) \frac{|00\rangle+|11\rangle}{\sqrt{2}} & =\frac{|00\rangle-|11\rangle}{\sqrt{2}}, \tag{3}\\
(X Z \otimes I) \frac{|00\rangle+|11\rangle}{\sqrt{2}} & =\frac{|10\rangle-|01\rangle}{\sqrt{2}} . \tag{4}
\end{align*}
$$

The above three states and $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$ form an orthonormal basis of the state space of 2 qubits (excercise).

Superdense coding 3

The sender sends his physical system to the receiver.
The receiver has 2 qubits, and the state of 2 qubits is either $22,43,4$ $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$.
Since they are orthogonal, they can be distinguished by measuring an appropriate observable.
The receiver can distinguish 4 states, and thus he/she can obtain two bits of information.

Exercise (60 min.?)

1. Show that the matrix 1 is Hermitian.
2. Derive the identity in detail.
3. Show that the inner product of the vectors
4. Prove that the measurement outcome is k if the state before measurement is $\left|\varphi_{k}\right\rangle$ in page 9.
5. Prove that the state before measurement is $\left|\varphi_{k}\right\rangle$ if the measurement outcome is k in page 9 .
Your understanding only comes through mathematics and your hand computation, because the intuition of human being is useless and misleading in the quantum physics!
Warning: Computation will become 5 times harder in Shor's quantum factorization algorithm! The teleportation and the dense coding are the easiest in QIP. Please become familiar with the bra-ket notations and the tensor products, at this point. Please bring Matlab or Maple from Unit 8 (maybe tomorrow).
