
QIP Course 4: Quantum Teleportation

Ryutaroh Matsumoto

Nagoya University, Japan
Send your comments to ryutaroh.matsumoto@nagoya-u.jp

August 2018
@ Tokyo Tech.

Matsumoto (Nagoya U.) QIP Course 4: Quantum Teleportation Aug. 2018 1 / 25



Copyright

Materials presented here can by reused under the Creative Commons
Attribution 4.0 International License

https://creativecommons.org/licenses/by/4.0.

Matsumoto (Nagoya U.) QIP Course 4: Quantum Teleportation Aug. 2018 2 / 25

https://creativecommons.org/licenses/by/4.0


Answers of prev. exercises

|−⟩ =

(
1
0

)
, | | ⟩ =

(
0
1

)
,X =

(
0 1
1 0

)
,

Z =
(

1 0
0 −1

)
, |Ψ⟩ =

|−⟩ ⊗ |−⟩ + | | ⟩ ⊗ | | ⟩
√

2
I is the 2 × 2 identity matrix. When you answer to the following, avoid
expanding vectors into their components.
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1. Show that the length (norm) of |Ψ⟩ is 1.

⟨Ψ|Ψ⟩

=
⟨−| ⊗ ⟨−| + ⟨ | | ⊗ ⟨ | |

√
2

·
|−⟩ ⊗ |−⟩ + | | ⟩ ⊗ | | ⟩

√
2

=
1
2

(⟨−| ⊗ ⟨−||−⟩ ⊗ |−⟩ + ⟨ | | ⊗ ⟨ | || | ⟩ ⊗ | | ⟩

+⟨−| ⊗ ⟨−|| | ⟩ ⊗ | | ⟩ + ⟨ | | ⊗ ⟨ | ||−⟩ ⊗ |−⟩)

=
1
2

(⟨−|−⟩ × ⟨−|−⟩︸︷︷︸
=1

+⟨ | | | ⟩ × ⟨ | | | ⟩︸︷︷︸
=1

+⟨−| | ⟩ × ⟨−| | ⟩︸︷︷︸
=0

+⟨ | |−⟩ × ⟨ | |−⟩︸︷︷︸
=0

)

=
1
2

(1 + 1 + 0 + 0) = 1

2. Show that X and Z are unitary matrices.
Straightforward computation.
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3. Express (X ⊗ I)|Ψ⟩ in terms of |−⟩ and | | ⟩.

(X ⊗ I)|Ψ⟩

= (X ⊗ I)
|−⟩ ⊗ |−⟩ + | | ⟩ ⊗ | | ⟩

√
2

=
(X ⊗ I)|−⟩ ⊗ |−⟩ + (X ⊗ I)| | ⟩ ⊗ | | ⟩

√
2

=

=| | ⟩︷︸︸︷
X|−⟩ ⊗|−⟩ +

=|−⟩︷︸︸︷
X| | ⟩ ⊗| | ⟩

√
2

=
| | ⟩ ⊗ |−⟩ + |−⟩ ⊗ | | ⟩

√
2

4. Express (Z ⊗ I)|Ψ⟩ in terms of |−⟩ and | | ⟩.
Answer: Similar to the last question. |−⟩⊗|−⟩−| | ⟩⊗| | ⟩√

2
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5. Suppose that one measures the observable Z ⊗ I of the system in the state
|Ψ⟩. For each measurement outcome, calculate the probability of getting the
outcome and the state after measurement.

outcome probability state
+1 0.5 |−⟩ ⊗ |−⟩

−1 0.5 | | ⟩ ⊗ | | ⟩

Projection can be easily computed, because . . .

Spectral decomposition of Z = |−⟩⟨−| − | | ⟩⟨ | |.
Spectral decomposition of Z ⊗ I = |−⟩⟨−| ⊗ I − | | ⟩⟨ | | ⊗ I.

(|−⟩⟨−| ⊗ I)
|−⟩ ⊗ |−⟩ + | | ⟩ ⊗ | | ⟩

√
2

=
|−⟩

=1︷︸︸︷
⟨−|−⟩ ⊗I|−⟩ + |−⟩

=0︷︸︸︷
⟨−| | ⟩ ⊗I| | ⟩

√
2

=
|−⟩ ⊗ |−⟩
√

2

We can easily see that
outcome probability state
+1 0.5 |−⟩ ⊗ |−⟩
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6. Is Z ⊗ Z a Hermitian matrix?
Yes.
7. Is Z ⊗ Z a unitary matrix?
Yes.
8. Write all the eigenvalues of Z ⊗ Z and an orthonormal basis of each
eigenspace. After that, compute the spectral decomposition of Z ⊗ Z.
Since the eigenvalues of Z are +1 and −1, the eigenvalues of Z ⊗ Z are +1 and
−1. The spectral decomposition of Z ⊗ Z is

(+1)(|−⟩⟨−| ⊗ |−⟩⟨−| + | | ⟩⟨ | | ⊗ | | ⟩⟨ | |)

+(−1)(|−⟩⟨−| ⊗ | | ⟩⟨ | | + | | ⟩⟨ | | ⊗ |−⟩⟨−|)

An orthonormal basis (ONB) of eigenspace belonging to eigenvalue +1 is
{|−⟩ ⊗ |−⟩, | | ⟩ ⊗ | | ⟩}, An ONB of eigenspace belonging to eigenvalue −1 is
{|−⟩ ⊗ | | ⟩, | | ⟩ ⊗ |−⟩}.
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9. Answer Question 5 with Z ⊗ I replaced with Z ⊗ Z.
Since

(|−⟩⟨−| ⊗ |−⟩⟨−| + | | ⟩⟨ | | ⊗ | | ⟩⟨ | |)|Ψ⟩ = |Ψ⟩,

(|−⟩⟨−| ⊗ | | ⟩⟨ | | + | | ⟩⟨ | | ⊗ |−⟩⟨−|)|Ψ⟩ = 0,

outcome probability state
+1 1 |Ψ⟩

−1 0
Because there are only two eigenvalues of Z ⊗ Z, the number of measurement
outcomes is TWO.
10 (Optional). Prove that Eq. (10) is the spectral decomposition of A ⊗ B. You
must calculate the set of eigenvalues of A ⊗ B and the projectors onto its
eigenspaces. It is not enough to simply prove the equality in Eq. (10).
Answer: See the next several pages.
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Eigenvalues and spectral decomposition of A ⊗ B

A,B: ℓ × ℓ Hermitian or unitary matrices.

A = λ1P1 + · · · + λmPm,

B = η1Q1 + · · · + ηnQn.

Firstly we compute the set of eigenvalues of A ⊗ B.

Let A|φ⟩ = λ|φ⟩, B|ψ⟩ = η|ψ⟩. Then we have

(A ⊗ B)(|φ⟩ ⊗ |ψ⟩) = (A|φ⟩) ⊗ (B|ψ⟩) = λη|φ⟩ ⊗ |ψ⟩,

and |φ⟩ ⊗ |ψ⟩ belongs to the eigenvalue λη of A ⊗ B. Therefore λiηj is an
eigenvalue of A ⊗ B for all i, j.

|φ1⟩, . . . , |φℓ⟩: orthogonal eigenvectors of A
|ψ1⟩, . . . , |ψℓ⟩: orthogonal eigenvectors of B.
The above eigenvectors must belong to some eigenvalues of A or B, and the
dimension of the space spanned by |φi⟩ ⊗ |ψj⟩ for i, j = 1, . . . , ℓ is ℓ2.
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On the other hand, I want to prove that there is no other eigenvalue other than
{λiηj | i = 1, . . . , m, j = 1, . . . , n} by a contradiction. If there is another
eigenvalue, then there exists an eigenvector linearly independent of |φi⟩ ⊗ |ψj⟩

and the number of linearly independent eigenvectors is larger than ℓ2, which
is a contradiction. We have prove that the set of eigenvalues is {λiηj | i = 1,
. . . , m, j = 1, . . . , n}.
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Computation of projector

Let α be an eigenvalue of A ⊗ B. We will compute the projector onto the
eigenspace belonging to α.
By change of index, we may assume that α = λ1η1 = λ2η2 = · · · = λuηu and
α , λiηj unless i = j ≤ u.
We have to proved that P1 ⊗ Q1 + · · · + PuQu

is the projection onto the eigenspace belonging to α.
{|φi1⟩, |φi2⟩, . . .}: An ONB of the eigenspace of A belonging to λi

{|ψj1⟩, |φj2⟩, . . .}: An ONB of the eigenspace of B belonging to ηj

An ONB of the eigenspace belonging to α is

{|φij⟩ ⊗ |ψik⟩ | i = 1, . . . , u, j, k ≥ 1}.
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Therefore its projector is∑
i,j,k

|φij⟩⟨φij| ⊗ |ψik⟩⟨ψik| =
∑

i

∑
j,k

|φij⟩⟨φij| ⊗ |ψik⟩⟨ψik|

=
∑

i

∑
j

|φij⟩⟨φij|

 ⊗
∑

k

|ψik⟩⟨ψik|


=

∑
i

Pi ⊗ Qi.

Therefore, the spectral decomposition of A × B is given by∑
α∈{λiηj |1≤i≤m,1≤j≤n}

α
∑
λiηj=α

Pi ⊗ Qj,
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What is quantum information processing?

The research of quantum information explores what can be done under the
assumption that all the unitary matrices, all the states, and all the
measurements are physically realizable.

We (at least I) do not care how one can implement (realize) a given unitary
matrix by a physical device.

However, the research of quantum computation imposes some restrictions on
the set of available unitary matrices because otherwise any computation can
be done by a single unitary matrix and we become unable to consider the
computational complexity of quantum computation.
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Some notations

|φ⟩ ⊗ |ψ⟩

= |φ⟩|ψ⟩

= |φψ⟩

A two-dimensional quantum system is said to be a qubit.
Qubit represents QUantum BIT.

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
.
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Quantum teleportation

Draw a figure on a blackboard.

Send a quantum state to a recipient who is spacially apart from the
sender.

The sender DOES NOT send the physical system.

The sender sends 2 bits information for transmission of 1 qubit.

The sender and the receiver share the entangled state

|00⟩ + |11⟩
√

2
.

Example: Suppose that the sender is on the earth, and the receiver is in a
spaceship far apart from the earth.
A physical object is reproduced at a distant place without sending a physical
object. Doesn’t it seem like a teleportation??
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Controlled NOT

Manipulation of a quantum system is expressed by a unitary matrix.
A unitary matrix U can be specified by U|φ⟩ for every basis vector |φ⟩

U: 4 × 4 unitary matrix

U|00⟩ = |00⟩, U|01⟩ = |01⟩,

U|10⟩ = |11⟩, U|11⟩ = |10⟩.

The right qubit is negated iff the left qubit is one.
U is similar to the NOT gate on the second qubit controlled by the first qubit.

left qubit: control qubit of CNOT
right qubit: target qubit of CNOT
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Teleportation (1)

|Ψ⟩ =
|00⟩ + |11⟩
√

2
is shared.

α|0⟩ + β|1⟩ is to be sent.

The state of the total system is

(α|0⟩ + β|1⟩)|Ψ⟩

=
1
√

2

[
α|0⟩(|00⟩ + |11⟩) + β|1⟩(|00⟩ + |11⟩)

]
The sender has the leftmost and the middle qubits, and the receiver has the
rightmost qubit.
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Teleportation (2)

1
√

2

[
α|0⟩(|00⟩ + |11⟩) + β|1⟩(|00⟩ + |11⟩)

]
Applying CNOT with
control quibit: leftmost qubit
target qubit: middle qubit

1
√

2

[
α|0⟩(|00⟩ + |11⟩) + β|1⟩(|10⟩ + |01⟩)

]
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Teleportation (3)

1
√

2

[
α|0⟩(|00⟩ + |11⟩) + β|1⟩(|10⟩ + |01⟩)

]
The matrix H:

H|0⟩ =
|0⟩ + |1⟩
√

2
, H|1⟩ =

|0⟩ − |1⟩
√

2
(1)

Applying H to the leftmost qubit:

1
2

[α(|0⟩ + |1⟩)(|00⟩ + |11⟩) +

β(|0⟩ − |1⟩)(|10⟩ + |01⟩)]

=
1
2

[|00⟩(α|0⟩ + β|1⟩) + |01⟩(α|1⟩ + β|0⟩) +

|10⟩(α|0⟩ − β|1⟩) + |11⟩(α|1⟩ − β|0⟩)]
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Teleportation (4)

1
2

[|00⟩(α|0⟩ + β|1⟩) + |01⟩(α|1⟩ + β|0⟩) +

|10⟩(α|0⟩ − β|1⟩) + |11⟩(α|1⟩ − β|0⟩)] (2)

The sender measures the observable Z1 of the leftmost qubit, and the Z2 of the
middle qubit, where

Z1 = Z2 =

(
1 0
0 −1

)
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Teleportation (5)

The sender sends the measurement outcomes, and the receiver applies the
following unitary matrix to the rightmost qubit according to outcomes.

Z1 Z2 Receiver’s matrix
+1 +1 2 × 2 identity matrix
+1 −1 X
−1 +1 Z
−1 −1 ZX

Then α|0⟩ + β|1⟩ is teleported to the receiver (Exercise).
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Explanation of teleportation

The sender has this qubit and this qubit. The receiver has this qubit.

Before teleportation:

(α|0⟩ + β|1⟩)
|00⟩ + |11⟩
√

2
After teleportation:

|??⟩(α|0⟩ + β|1⟩),

where ? is 0 or 1, depending on the measurement outcomes.
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Exercise (60 min.??)

Please discuss them with other students. You are also welcomed to talk with
the lecturer.
1. For each measurement outcome (±1,±1) of (Z1,Z2), compute the
probability of getting the outcome and the state of three qubit after
measurement of the state (2). Write your derivation of answer in detail for at
least one measurement outcome. Answer in the following format:

(Z1,Z2) probability state
(+1,+1) ? ?
(+1,−1) ? ?
(−1,+1) ? ?
(−1,−1) ? ?
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Hint for Q1

Q1 can be solved in the follwing steps for (+1,−1).

1 Compute the spectral decomposition of the observable Z1 ⊗ I2×2 ⊗ I2×2.
Let P(1)

+1 be the projection for the eigenvalue +1.

2 Compute P(1)
+1·state of (2) / ∥P(1)

+1·state of (2) ∥.

3 Compute the spectral decomposition of the observable I2×2 ⊗ Z2 ⊗ I2×2.
Let P(2)

−1 be the projection for the eigenvalue −1.

4 Compute P(2)
−1 times the quantum state obtained in Step 2.

Please make sure that the sum of probabilities is 1 in your answer.
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2. For each measurement outcome, compute the state of three qubits after the
receiver applies the matrix to the rightmost qubit. Write your derivation of
answer in detail for at least one measurement outcome. Answer in the
following format:

(Z1,Z2) state
(+1,+1) ?
(+1,−1) ?
(−1,+1) ?
(−1,−1) ?

Your understanding only comes through mathematics and your hand
computation, because the intuition of human being is useless and
misleading in the quantum physics!
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