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Answers of prev. exercises

1. Yes.
2.

X = +1 ·
1
2

(
1 1
1 1

)
+ (−1) ·

1
2

(
1 −1
−1 1

)
3. outcome probability state

+1 0.5 1
2

(
1 + i
1 + i

)
−1 0.5 1

2

(
1 − i
i − 1

)
4. The observable X distinguishes the / and \ polarizations.
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Orthonormal basis (Preparation for Q5)

{|φ1⟩, . . . , |φn⟩}: an orthonormal basis of V .
|ψ⟩ ∈ V can be written as

a1|φ1⟩ + · · · + an|φn⟩.

We have  n∑
i=1

|φi⟩⟨φi|

 |ψ⟩ = n∑
i=1

|φi⟩⟨φi|ψ⟩ =

n∑
i=1

|φi⟩ai = |ψ⟩.

Thus
n∑

i=1

|φi⟩⟨φi| = I. (1)

Assume i , j.

|φi⟩⟨φi||φj⟩⟨φj| = 0, (2)

|φi⟩⟨φi||φi⟩⟨φi| = |φi⟩⟨φi|, (3)

(|φi⟩⟨φi|)∗ = (⟨φi|)∗(|φi⟩)∗ = |φi⟩⟨φi|. (4)
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Properties of a projector

P1 = |φ1⟩⟨φ1| + · · · + |φm⟩⟨φm|

P2 = |φm+1⟩⟨φm+1| + · · · + |φn⟩⟨φn|

P∗1 = P1 (by Eq. (4)) (5)

P1P2 = 0 (by Eq. (2)) (6)

P1P1 = P1 (by Eqs. (2) and (3)) (7)
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Answer to Q5

5. Prove
n∑

j=1

∥∥∥Pj|φ⟩
∥∥∥2
= 1.

A: Hermitian matrix
A = λ1P1 + · · · + λnPn

Two eigenvectors belonging to different eigenvalues are orthogonal (see your
linear algebra textbook).

⇓

There exists an orthonormal basis {|ψij⟩} such that {|ψi1⟩, . . . , |ψimi⟩} is an
orthonormal basis of the eigenspace belonging to λi.

⇓
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Pi = |ψi1⟩⟨ψi1| + · · · + |ψimi⟩⟨ψimi |.

P∗i = Pi (by Eq. (5)),

PiPj =

{
Pi(i = j),
0(i , j)

(by Eqs. (6) and (7)),

P1 + · · · + Pn = I (by Eq. (1)).

n∑
i=1

∥Pi|φ⟩∥
2 =

n∑
i=1

⟨φ|P∗i Pi|φ⟩ =

n∑
i=1

⟨φ|PiPi|φ⟩

=

n∑
i=1

⟨φ|Pi|φ⟩ = ⟨φ|

 n∑
i=1

Pi

 |φ⟩
= ⟨φ|φ⟩ = 1.
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Answer to Q6

Prove that Eq. (1) (defining PW) is the projection onto W in the sense of the
previous unit of this course.

V: linear space
W: linear subspace of V
W⊥: orthogonal complement of W in V
One has to prove

1 PW |φ⟩ ∈ W for any |φ⟩, and
2 |φ⟩ − PW |φ⟩ ∈ W⊥ for any |φ⟩.
{|ψ1⟩, . . . , |ψm⟩}: orthonormal basis of W
{|ψm+1⟩, . . . , |ψn⟩}: orthonormal basis of W⊥

PW =

m∑
i=1

|ψi⟩⟨ψi|,

PW⊥ =

n∑
i=m+1

|ψi⟩⟨ψi|.

Matsumoto (Nagoya U.) QIP Course 3: Basics of QIP (Part 2) Aug. 2018 9 / 21



PW + PW⊥ = I, (by Eq. (1))

|φ⟩ = PW |φ⟩ + PW⊥ |φ⟩

PW |φ⟩ =

m∑
i=1

|ψi⟩⟨ψi|φ⟩ ∈ W,

|φ⟩ − PW |φ⟩ = PW⊥ |φ⟩ =

n∑
i=m+1

|ψi⟩⟨ψi|φ⟩ ∈ W⊥

Observe that the above two equalities are what we had to verify.
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Manipulation of a quantum system

Manipulation of a quantum system without extracting information is
represented by a unitary matrix U.
A unitary matrix U is a matrix such that UU∗ = I.

Example:

|−⟩ =

(
1
0

)
, | | ⟩ =

(
0
1

)
,X =

(
0 1
1 0

)
,

Z =
(

1 0
0 −1

)
,

XX∗ = I,

ZZ∗ = I,

X|−⟩ = | | ⟩,

X| | ⟩ = |−⟩,

Z|−⟩ = |−⟩,

Z| | ⟩ = −| | ⟩,
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Example with polarization

The below is just rotating, neither X or Z. Source: OpenStax College.
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Tenser product, or Kronecker product

A: m × n matrix, B: p × q matrix

A ⊗ B =


A11B A12B · · · A1nB
A21B A22B · · · A2nB
...

...
...

Am1B Am2B · · · AmnB


The tensor product of column vectors is defined by regarding column vectors
as m × 1 and p × 1 matrices.
The tensor product of row vectors is similarly defined.
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Properties of tensor products

α: a complex number

α(|φ⟩ ⊗ |ψ⟩) = (α|φ⟩) ⊗ |ψ⟩

= |φ⟩ ⊗ (α|ψ⟩)

(|φ1⟩ + |φ2⟩) ⊗ |ψ⟩ = |φ1⟩ ⊗ |ψ⟩ + |φ2⟩ ⊗ |ψ⟩

|φ⟩ ⊗ (|ψ1⟩ + |ψ2⟩) = |φ⟩ ⊗ |ψ1⟩ + |φ⟩ ⊗ |ψ2⟩

(similar relations hold for matrices)

(A ⊗ B)(|φ⟩ ⊗ |ψ⟩) = (A|φ⟩) ⊗ (B|ψ⟩)

= A|φ⟩ ⊗ B|ψ⟩

(⟨φ1| ⊗ ⟨φ2|)(|ψ1⟩ ⊗ |ψ2⟩) = ⟨φ1|ψ1⟩ · ⟨φ2|ψ2⟩

(A ⊗ B)∗ = A∗ ⊗ B∗

(A ⊗ B)−1 = A−1 ⊗ B−1

V , W: linear spaces
V ⊗W: linear space spanned by {|φ⟩ ⊗ |ψ⟩ : |φ⟩ ∈ V , |ψ⟩ ∈ W}.
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Tensor product is not the direct product

dim V ⊗W = dim V × dim W, while
dim V ×W = dim V + dim W.

Suppose that v⃗ ∈ C2 and w⃗ ∈ C3.
The direct product (⃗v, w⃗) has 5 numbers as its components,
while the tensor product v⃗ ⊗ w⃗ has 6 numbers as its component.
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Composite system

A quantum system 1 is represented by a linear spaceH1.
A quantum system 2 is represented by a linear spaceH2.

The quantum system consisting of system 1 and system 2 is represented by a
vector inH1 ⊗H2.

Applying a unitary operator U1 to system 1 is equivalent to applying U1 ⊗ I to
the composite system.

Measuring an observable A1 of system 1 is equivalent to measuring the
observable A1 ⊗ I of the composite system.
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Entangled state

V , W: linear space
Some vector in V ⊗W cannot be written as |φ⟩ ⊗ |ψ⟩ for any |φ⟩ ∈ V and
|ψ⟩ ∈ W.

1
√

2

{(
1
0

)
⊗

(
1
0

)
+

(
0
1

)
⊗

(
0
1

)}
=

1
√

2


1
0
0
1

 (8)

(
a
b

)
⊗

(
c
d

)
=


ac
ad
bc
bd

 (9)

If ac , 0 and bd , 0, then a , 0, b , 0, c , 0, and d , 0. Therefore, Eq. (8)
cannot be expressed as Eq. (9).

A quantum state that cannot be expressed as |φ⟩ ⊗ |ψ⟩ is called an entangled
state.
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Subsystem of a composite system

A composite system consists of systems 1 and 2 is in an entangled state.

⇓

The state of system 1 cannot be expressed by a state vector.

The state vector is an incomplete expression of quantum states.

⇓ But

Any quantum state can always be expressed as a state vector of some
larger system (“purification” in unit 7).

Matrix expression of the quantum state does not have such a drawback
(“partial trace” in unit 6).
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Spectral decomposition of a tensor product

A, B: Hermitian matrices
Spectral decompositions of A and B:

A = λ1P1 + · · · + λmPm,

B = η1Q1 + · · · + ηnQn.

The spectral decomposition of A ⊗ B is given by

A ⊗ B =
m∑

i=1

n∑
j=1

λiηjPi ⊗ Qj. (10)

Provide an example on the black board.
From the above equation, we can see that the set of eigenvalues of A ⊗ B is
{λiηj | i = 1, . . . ,m, j = 1, . . . , n}.
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Exercises (60 min.?)

Please discuss them with other students. You are also welcomed to talk with
the lecturer.
You are not forced to solve the following problems, but you must able to
quickly solve them, in order to follow the subsequent lectures.

|−⟩ =

(
1
0

)
, | | ⟩ =

(
0
1

)
,X =

(
0 1
1 0

)
,

Z =
(

1 0
0 −1

)
, |Ψ⟩ =

|−⟩ ⊗ |−⟩ + | | ⟩ ⊗ | | ⟩
√

2
I is the 2 × 2 identity matrix. When you answer to the following, avoid
expanding vectors into their components, and insteadly use the equalities in
p. 14 as much as possible.
1. Show that the length (norm) of |Ψ⟩ is 1.
2. Show that X and Z are unitary matrices.
3. Express (X ⊗ I)|Ψ⟩ in terms of |−⟩ and | | ⟩. Hint: Use relations in p. 14.
4. Express (Z ⊗ I)|Ψ⟩ in terms of |−⟩ and | | ⟩.
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5. Suppose that one measures the observable Z ⊗ I of the system in the state
|Ψ⟩. For each measurement outcome, calculate the probability of getting the
outcome and the state after measurement.
6. Is Z ⊗ Z a Hermitian matrix?
7. Is Z ⊗ Z a unitary matrix?
8. Write all the eigenvalues of Z ⊗ Z, an orthonormal basis of each
eigenspace, and compute the spectral decomposition of Z ⊗ Z.
9. Answer Question 5 with Z ⊗ I replaced with Z ⊗ Z.
10 (Optional for non-math students). Prove that Eq. (10) is the spectral
decomposition of A ⊗ B. You must calculate the set of eigenvalues of A ⊗ B
and the projectors onto its eigenspaces. It is not enough to simply prove the
equality in Eq. (10).
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