Now for k =0, f(xo) < ¢5. Suppose that the induction hypothesis is valid for any index equal
or smaller than k. Due to the previous lemma,

2

G = (1= 0w)df + o () — 5o IV A ()
]__
Lt (P R PR RER)
2
> (1 —ag)f (@) + anf () — =2V £ (yp)l13

2Vk+1
(1 — ag)yk (1
OO (B 2 (V). v~ )
Yik+1
Now, since f(x) is convex, f(xr) > f(yi) + (VF(yr), r — y;), and multiplying this inequality by
(1 — ag) we have:
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Recall that since V f is L-Lipschitz continuous, if we apply Lemma 3.6 to y, and xp+1 = y, —
1V f(yx), we obtain
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Therefore, if we impose
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it justifies our choice for y;. And putting
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it justifies our choice for ay. Since 0%(17;701;)%# > 0, we finally obtain ¢;_ | > f(xx11) as wished.

The above theorem suggests an algorithm to minimize f € SLIL(R")
Notice that in the following method, we don’t need the estimated sequence anymore.

Generic Scheme for the Nesterov’s Optimal Gradient Method
Step 0: Choose g € R", let v9 > 0 such that L > vy > u > 0.
Set vg := xg and k := 0.
Step 1: Compute oy, € (0, 1] from the equation Loz = (1 — ag)vx + agp.
Step 2: Set g1 := (1 — ap)y + app, gy = BB DE
Step 3: Compute f(y;) and V f(y;,).
Step 4: Find x4 such that f(zx1) < f(yg) — 52| VF(ye)||3 using “line search”.

Step 5: Set vy := (170"6)7’“1)“&7’“:1?{’“70”“Vf(y’“), k:=k+1 and go to Step 1.

Theorem 8.6 Consider f € SLJL(R"), possible with ¢ = 0 (which means that f € ]:}—J’l(R”)). The
generic scheme of the Nesterov’s optimal gradient method generates a sequence {x;}7°, such that
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k-1
where a1 = 0 and \;, = H (1 — ).
i=—1
In other words, the sequence {f(xy) — f(x*)};2, converges R-sublinearly to zero if ;= 0 and
R-linearly to zero if p > 0.
In addition, if p > 0,
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That is, {||zx — z*||*}32, converges R-linearly to zero.

Proof:
The first inequality is obvious from the definitions and Lemma 8.2.

We already know that oy > \/% (k=0,1,...) (see proof of Theorem 8.5), therefore,
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which only has an effect if ¢ > 0. For the case = 0, let us prove first that v = yAx. Obviously
Yo = YoAo(=Y0(1 — @—1) = ), and assuming the induction hypothesis,

Y1 = (1 —ap)yk +agp = (1 — ag)ve = (1 — ag) o ke = Y0 k-

Therefore, La% = Vp+1 = YoAg+1- Since Ay is a decreasing sequence and Ag > 0,
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and we have the result.

For p > 0, using the definition of strong convexity of f(x), we obtain the upper bound for
2y, — *|[3. I

Thus

Corollary 8.7 Consider f € S;’lL(R”), possible with 1 = 0 (which means that f € flL’l(R”)). If
we take 79 = L, the generic scheme of the Nesterov’s optimal gradient method generates a sequence
{xr}32, such that

k
fmw—fww<me{(r—¢E),“;:V}WW—ww%

In other words, the sequence {f(xx) — f(x*)}32, converges R-sublinearly to zero if ;= 0 and
R-linearly to zero if p > 0.
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In the particular case of i > 0, we have the following inequality:

k
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That means that the sequence {||zy — z*||3}72, converges R-linearly to zero.

Proof:
The two inequalities follow from the previous theorem, f(xo) — f(x*) < (Vf(x*),xo — =) +
L||xo — x*|3, and the fact that V f(z*) = 0. 1

Now, instead of doing a line search at Step 4 of the generic scheme for the Nesterov’s optimal
gradient method, let us consider the constant step size iteration xyx11 := y;, — %V f(y) (see proof
of Theorem 8.5). From the calculations given at Exercise 1, we arrive to the following simplified
scheme. Hereafter, we assume that L > p to exclude the trivial case L = p with finished in one
iteration.

Constant Step Scheme for the Nesterov’s Optimal Gradient Method
Step 0: Choose xg € R", a € (0,1) such that cm(lai)ioLé;u) >0, u< %(fj'ifé;m <L,
set yo := xo and k := 0.

Step 1: Compute V f(y;).

Step 2:  Set @py1 =1y, — +V.F(yp).

Step 3: Compute akzrll c )(0, 1) from the equation azﬂ = (1— agi1)a; + Fogqr.

. . apl—og
Step 4: Set Fj := s

Step 5:  Set Y, := ®p41 + Br(Try1 — @), k := k + 1 and go to Step 1.

Observe that the sequences {x1}72, and {y,}7>, generated by the “Generic Scheme” and the
“Constant Step Scheme” are exactly the same* if we choose xy 1 := y), — %V f(y;) in the former
method. Therefore, the result of Theorem 8.6 is still valid for vo := ag(aoLl — p)/(1 — ap).

Also, if we further impose vy = ag(aoL — p)/(1 — ag) = L, we will have the rate of convergence
of Theorem 8.7.

Theorem 8.8 Consider f € SLJL(R"), possible with © = 0 (which means that f € ]:}—J’l(R”)). The
constant step scheme of the Nesterov’s optimal gradient method generates a sequence {x},}7° , such
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This means that the method is “optimal” for the class of functions F lL’l(R”), and SLIL(R")

and

Proof:  Since the inequalities above are already shown in the previous Corollary 8.7, it remains
to show the “optimality” of the methods for each class of functions.
For the case p = 0, the “optimality” of the method is obvious from Theorem 6.1.

4strictly speaking, there is a one index difference between y,.’s on these two methods due to the order y, is defined
in the loop.
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