
Now for k = 0, f(x0) ≤ ϕ∗
0. Suppose that the induction hypothesis is valid for any index equal

or smaller than k. Due to the previous lemma,

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(yk)−

α2
k

2γk+1
∥∇f(yk)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨∇f(yk),vk − yk⟩

)
≥ (1− αk)f(xk) + αkf(yk)−

α2
k

2γk+1
∥∇f(yk)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨∇f(yk),vk − yk⟩

)
.

Now, since f(x) is convex, f(xk) ≥ f(yk) + ⟨∇f(yk),xk − yk⟩, and multiplying this inequality by
(1− αk) we have:

ϕ∗
k+1 ≥ f(yk)−

α2
k

2γk+1
∥∇f(yk)∥22+(1−αk)⟨∇f(yk),

αkγk
γk+1

(vk−yk)+xk−yk⟩+
αk(1− αk)γkµ

2γk+1
∥yk−vk∥22.

Recall that since ∇f is L-Lipschitz continuous, if we apply Lemma 3.6 to yk and xk+1 = yk −
1
L∇f(yk), we obtain

f(yk)−
1

2L
∥∇f(yk)∥22 ≥ f(xk+1).

Therefore, if we impose
αkγk
γk+1

(vk − yk) + xk − yk = 0

it justifies our choice for yk. And putting

α2
k

2γk+1
=

1

2L

it justifies our choice for αk. Since
αk(1−αk)γkµ

γk+1
≥ 0, we finally obtain ϕ∗

k+1 ≥ f(xk+1) as wished.

The above theorem suggests an algorithm to minimize f ∈ S1,1
µ,L(R

n).
Notice that in the following method, we don’t need the estimated sequence anymore.

Generic Scheme for the Nesterov’s Optimal Gradient Method

Step 0: Choose x0 ∈ Rn, let γ0 > 0 such that L ≥ γ0 ≥ µ ≥ 0.
Set v0 := x0 and k := 0.

Step 1: Compute αk ∈ (0, 1] from the equation Lα2
k = (1− αk)γk + αkµ.

Step 2: Set γk+1 := (1− αk)γk + αkµ, yk :=
αkγkvk+γk+1xk

γk+αkµ
.

Step 3: Compute f(yk) and ∇f(yk).
Step 4: Find xk+1 such that f(xk+1) ≤ f(yk)− 1

2L∥∇f(yk)∥22 using “line search”.

Step 5: Set vk+1 :=
(1−αk)γkvk+αkµyk−αk∇f (yk)

γk+1
, k := k + 1 and go to Step 1.

Theorem 8.6 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈ F1,1
L (Rn)). The

generic scheme of the Nesterov’s optimal gradient method generates a sequence {xk}∞k=0 such that

f(xk)− f(x∗) ≤ λk

[
f(x0) +

γ0
2
∥x∗ − x0∥22 − f(x∗)

]
≤ min

{(
1−

√
µ

L

)k

,
4L

(2
√
L+ k

√
γ0)2

}[
f(x0) +

γ0
2
∥x∗ − x0∥22 − f(x∗)

]
,
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where α−1 = 0 and λk =

k−1∏
i=−1

(1− αi).

In other words, the sequence {f(xk) − f(x∗)}∞k=0 converges R-sublinearly to zero if µ = 0 and
R-linearly to zero if µ > 0.

In addition, if µ > 0,

∥xk − x∗∥2 ≤ 2

µ
λk

[
f(x0) +

γ0
2
∥x∗ − x0∥22 − f(x∗)

]
≤ 2

µ
min

{(
1−

√
µ

L

)k

,
4L

(2
√
L+ k

√
γ0)2

}[
f(x0) +

γ0
2
∥x∗ − x0∥22 − f(x∗)

]
.

That is, {∥xk − x∗∥2}∞k=0 converges R-linearly to zero.

Proof:
The first inequality is obvious from the definitions and Lemma 8.2.

We already know that αk ≥
√

µ
L (k = 0, 1, . . .) (see proof of Theorem 8.5), therefore,

λk =

k−1∏
i=−1

(1− αi) =
k−1∏
i=0

(1− αi) ≤
(
1−

√
µ

L

)k

,

which only has an effect if µ > 0. For the case µ = 0, let us prove first that γk = γ0λk. Obviously
γ0 = γ0λ0(= γ0(1− α−1) = γ0), and assuming the induction hypothesis,

γk+1 = (1− αk)γk + αkµ = (1− αk)γk = (1− αk)γ0λk = γ0λk+1.

Therefore, Lα2
k = γk+1 = γ0λk+1. Since λk is a decreasing sequence and λk > 0,

1√
λk+1

− 1√
λk

=

√
λk −

√
λk+1√

λkλk+1

=
λk − λk+1√

λkλk+1(
√
λk +

√
λk+1)

≥ λk − λk+1√
λkλk+1(

√
λk +

√
λk)

=
λk − λk+1

2λk

√
λk+1

=
λk − (1− αk)λk

2λk

√
λk+1

=
αk

2
√
λk+1

=
1

2

√
γ0
L
.

Thus
1√
λk

≥ 1
√
γ0

+
k

2

√
γ0
L

= 1 +
k

2

√
γ0
L

and we have the result.
For µ > 0, using the definition of strong convexity of f(x), we obtain the upper bound for

∥xk − x∗∥22.

Corollary 8.7 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈ F1,1
L (Rn)). If

we take γ0 = L, the generic scheme of the Nesterov’s optimal gradient method generates a sequence
{xk}∞k=0 such that

f(xk)− f(x∗) ≤ Lmin

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22.

In other words, the sequence {f(xk) − f(x∗)}∞k=0 converges R-sublinearly to zero if µ = 0 and
R-linearly to zero if µ > 0.
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In the particular case of µ > 0, we have the following inequality:

∥xk − x∗∥22 ≤
2L

µ
min

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22.

That means that the sequence {∥xk − x∗∥22}∞k=0 converges R-linearly to zero.

Proof:
The two inequalities follow from the previous theorem, f(x0) − f(x∗) ≤ ⟨∇f(x∗),x0 − x∗⟩ +

L
2 ∥x0 − x∗∥22, and the fact that ∇f(x∗) = 0.

Now, instead of doing a line search at Step 4 of the generic scheme for the Nesterov’s optimal
gradient method, let us consider the constant step size iteration xk+1 := yk − 1

L∇f(yk) (see proof
of Theorem 8.5). From the calculations given at Exercise 1, we arrive to the following simplified
scheme. Hereafter, we assume that L > µ to exclude the trivial case L = µ with finished in one
iteration.

Constant Step Scheme for the Nesterov’s Optimal Gradient Method

Step 0: Choose x0 ∈ Rn, α0 ∈ (0, 1) such that α0(α0L−µ)
1−α0

> 0, µ ≤ α0(α0L−µ)
1−α0

≤ L,

set y0 := x0 and k := 0.
Step 1: Compute ∇f(yk).
Step 2: Set xk+1 := yk − 1

L∇f(yk).
Step 3: Compute αk+1 ∈ (0, 1) from the equation α2

k+1 = (1− αk+1)α
2
k +

µ
Lαk+1.

Step 4: Set βk := αk(1−αk)
α2
k+αk+1

.

Step 5: Set yk+1 := xk+1 + βk(xk+1 − xk), k := k + 1 and go to Step 1.

Observe that the sequences {xk}∞k=0 and {yk}∞k=0 generated by the “Generic Scheme” and the
“Constant Step Scheme” are exactly the same4 if we choose xk+1 := yk − 1

L∇f(yk) in the former
method. Therefore, the result of Theorem 8.6 is still valid for γ0 := α0(α0L− µ)/(1− α0).

Also, if we further impose γ0 = α0(α0L− µ)/(1− α0) = L, we will have the rate of convergence
of Theorem 8.7.

Theorem 8.8 Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that f ∈ F1,1
L (Rn)). The

constant step scheme of the Nesterov’s optimal gradient method generates a sequence {xk}∞k=0 such
that

f(xk)− f(x∗) ≤ Lmin

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22,

and

∥xk − x∗∥22 ≤
2L

µ
min

{(
1−

√
µ

L

)k

,
4

(k + 2)2

}
∥x0 − x∗∥22.

This means that the method is “optimal” for the class of functions F1,1
L (Rn), and S1,1

µ,L(R
n).

Proof: Since the inequalities above are already shown in the previous Corollary 8.7, it remains
to show the “optimality” of the methods for each class of functions.
For the case µ = 0, the “optimality” of the method is obvious from Theorem 6.1.

4strictly speaking, there is a one index difference between yk’s on these two methods due to the order yk is defined
in the loop.
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