Now for $k=0, f\left(\boldsymbol{x}_{0}\right) \leq \phi_{0}^{*}$. Suppose that the induction hypothesis is valid for any index equal or smaller than k. Due to the previous lemma,

$$
\begin{aligned}
\phi_{k+1}^{*}= & \left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right) \\
\geq & \left(1-\alpha_{k}\right) f\left(\boldsymbol{x}_{k}\right)+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right) .
\end{aligned}
$$

Now, since $f(\boldsymbol{x})$ is convex, $f\left(\boldsymbol{x}_{k}\right) \geq f\left(\boldsymbol{y}_{k}\right)+\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}_{k}-\boldsymbol{y}_{k}\right\rangle$, and multiplying this inequality by ($1-\alpha_{k}$) we have:
$\phi_{k+1}^{*} \geq f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}+\left(1-\alpha_{k}\right)\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right), \frac{\alpha_{k} \gamma_{k}}{\gamma_{k+1}}\left(\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right)+\boldsymbol{x}_{k}-\boldsymbol{y}_{k}\right\rangle+\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k} \mu}{2 \gamma_{k+1}}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}$.
Recall that since $\boldsymbol{\nabla} \boldsymbol{f}$ is L-Lipschitz continuous, if we apply Lemma 3.6 to \boldsymbol{y}_{k} and $\boldsymbol{x}_{k+1}=\boldsymbol{y}_{k}-$ $\frac{1}{L} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)$, we obtain

$$
f\left(\boldsymbol{y}_{k}\right)-\frac{1}{2 L}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2} \geq f\left(\boldsymbol{x}_{k+1}\right) .
$$

Therefore, if we impose

$$
\frac{\alpha_{k} \gamma_{k}}{\gamma_{k+1}}\left(\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right)+\boldsymbol{x}_{k}-\boldsymbol{y}_{k}=\mathbf{0}
$$

it justifies our choice for \boldsymbol{y}_{k}. And putting

$$
\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}=\frac{1}{2 L}
$$

it justifies our choice for α_{k}. Since $\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k} \mu}{\gamma_{k+1}} \geq 0$, we finally obtain $\phi_{k+1}^{*} \geq f\left(\boldsymbol{x}_{k+1}\right)$ as wished.
The above theorem suggests an algorithm to minimize $f \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$.
Notice that in the following method, we don't need the estimated sequence anymore.

Generic Scheme for the Nesterov's Optimal Gradient Method			
Step 0:	Choose $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$, let $\gamma_{0}>0$ such that $L \geq \gamma_{0} \geq \mu \geq 0$.		
	Set $\boldsymbol{v}_{0}:=\boldsymbol{x}_{0}$ and $k:=0$.		
Step 1:	Compute $\alpha_{k} \in(0,1]$ from the equation $L \alpha_{k}^{2}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu$.		
Step 2:	Set $\gamma_{k+1}:=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu, \boldsymbol{y}_{k}:=\frac{\alpha_{k} \gamma_{k} \boldsymbol{v}_{k+\gamma_{k+1}}^{\gamma_{k}+\alpha_{k} \mu}}{\boldsymbol{x}_{k}}$.		
Step 3:	Compute $f\left(\boldsymbol{y}_{k}\right)$ and $\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)$.		
Step 4:	Find \boldsymbol{x}_{k+1} such that $f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{y}_{k}\right)-\frac{1}{2 L}\left\\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right\\|_{2}^{2}$ using "line search".		
Step 5:	Set $\boldsymbol{v}_{k+1}:=\frac{\left(1-\alpha_{k} \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \boldsymbol{\mu} \boldsymbol{y}_{k}-\alpha_{k} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right.}{\gamma_{k+1}}, k:=k+1$ and go to Step 1.		

Theorem 8.6 Consider $f \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$, possible with $\mu=0$ (which means that $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$). The generic scheme of the Nesterov's optimal gradient method generates a sequence $\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{\infty}$ such that

$$
\begin{aligned}
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) & \leq \lambda_{k}\left[f\left(\boldsymbol{x}_{0}\right)+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}^{*}-\boldsymbol{x}_{0}\right\|_{2}^{2}-f\left(\boldsymbol{x}^{*}\right)\right] \\
& \leq \min \left\{\left(1-\sqrt{\frac{\mu}{L}}\right)^{k}, \frac{4 L}{\left(2 \sqrt{L}+k \sqrt{\gamma_{0}}\right)^{2}}\right\}\left[f\left(\boldsymbol{x}_{0}\right)+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}^{*}-\boldsymbol{x}_{0}\right\|_{2}^{2}-f\left(\boldsymbol{x}^{*}\right)\right],
\end{aligned}
$$

where $\alpha_{-1}=0$ and $\lambda_{k}=\prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)$.
In other words, the sequence $\left\{f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right)\right\}_{k=0}^{\infty}$ converges R-sublinearly to zero if $\mu=0$ and R-linearly to zero if $\mu>0$.

In addition, if $\mu>0$,

$$
\begin{aligned}
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|^{2} & \leq \frac{2}{\mu} \lambda_{k}\left[f\left(\boldsymbol{x}_{0}\right)+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}^{*}-\boldsymbol{x}_{0}\right\|_{2}^{2}-f\left(\boldsymbol{x}^{*}\right)\right] \\
& \leq \frac{2}{\mu} \min \left\{\left(1-\sqrt{\frac{\mu}{L}}\right)^{k}, \frac{4 L}{\left(2 \sqrt{L}+k \sqrt{\gamma_{0}}\right)^{2}}\right\}\left[f\left(\boldsymbol{x}_{0}\right)+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}^{*}-\boldsymbol{x}_{0}\right\|_{2}^{2}-f\left(\boldsymbol{x}^{*}\right)\right]
\end{aligned}
$$

That is, $\left\{\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|^{2}\right\}_{k=0}^{\infty}$ converges R-linearly to zero.
Proof:
The first inequality is obvious from the definitions and Lemma 8.2.
We already know that $\alpha_{k} \geq \sqrt{\frac{\mu}{L}}(k=0,1, \ldots)$ (see proof of Theorem 8.5), therefore,

$$
\lambda_{k}=\prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)=\prod_{i=0}^{k-1}\left(1-\alpha_{i}\right) \leq\left(1-\sqrt{\frac{\mu}{L}}\right)^{k}
$$

which only has an effect if $\mu>0$. For the case $\mu=0$, let us prove first that $\gamma_{k}=\gamma_{0} \lambda_{k}$. Obviously $\gamma_{0}=\gamma_{0} \lambda_{0}\left(=\gamma_{0}\left(1-\alpha_{-1}\right)=\gamma_{0}\right)$, and assuming the induction hypothesis,

$$
\gamma_{k+1}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu=\left(1-\alpha_{k}\right) \gamma_{k}=\left(1-\alpha_{k}\right) \gamma_{0} \lambda_{k}=\gamma_{0} \lambda_{k+1}
$$

Therefore, $L \alpha_{k}^{2}=\gamma_{k+1}=\gamma_{0} \lambda_{k+1}$. Since λ_{k} is a decreasing sequence and $\lambda_{k}>0$,

$$
\begin{aligned}
\frac{1}{\sqrt{\lambda_{k+1}}}-\frac{1}{\sqrt{\lambda_{k}}} & =\frac{\sqrt{\lambda_{k}}-\sqrt{\lambda_{k+1}}}{\sqrt{\lambda_{k} \lambda_{k+1}}}=\frac{\lambda_{k}-\lambda_{k+1}}{\sqrt{\lambda_{k} \lambda_{k+1}}\left(\sqrt{\lambda_{k}}+\sqrt{\lambda_{k+1}}\right)} \\
& \geq \frac{\lambda_{k}-\lambda_{k+1}}{\sqrt{\lambda_{k} \lambda_{k+1}}\left(\sqrt{\lambda_{k}}+\sqrt{\lambda_{k}}\right)}=\frac{\lambda_{k}-\lambda_{k+1}}{2 \lambda_{k} \sqrt{\lambda_{k+1}}}=\frac{\lambda_{k}-\left(1-\alpha_{k}\right) \lambda_{k}}{2 \lambda_{k} \sqrt{\lambda_{k+1}}} \\
& =\frac{\alpha_{k}}{2 \sqrt{\lambda_{k+1}}}=\frac{1}{2} \sqrt{\frac{\gamma_{0}}{L}} .
\end{aligned}
$$

Thus

$$
\frac{1}{\sqrt{\lambda_{k}}} \geq \frac{1}{\sqrt{\gamma_{0}}}+\frac{k}{2} \sqrt{\frac{\gamma_{0}}{L}}=1+\frac{k}{2} \sqrt{\frac{\gamma_{0}}{L}}
$$

and we have the result.
For $\mu>0$, using the definition of strong convexity of $f(\boldsymbol{x})$, we obtain the upper bound for $\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}^{2}$.

Corollary 8.7 Consider $f \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$, possible with $\mu=0$ (which means that $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$). If we take $\gamma_{0}=L$, the generic scheme of the Nesterov's optimal gradient method generates a sequence $\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{\infty}$ such that

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq L \min \left\{\left(1-\sqrt{\frac{\mu}{L}}\right)^{k}, \frac{4}{(k+2)^{2}}\right\}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}
$$

In other words, the sequence $\left\{f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right)\right\}_{k=0}^{\infty}$ converges R-sublinearly to zero if $\mu=0$ and R-linearly to zero if $\mu>0$.

In the particular case of $\mu>0$, we have the following inequality:

$$
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}^{2} \leq \frac{2 L}{\mu} \min \left\{\left(1-\sqrt{\frac{\mu}{L}}\right)^{k}, \frac{4}{(k+2)^{2}}\right\}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}
$$

That means that the sequence $\left\{\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}^{2}\right\}_{k=0}^{\infty}$ converges R-linearly to zero.
Proof:
The two inequalities follow from the previous theorem, $f\left(\boldsymbol{x}_{0}\right)-f\left(\boldsymbol{x}^{*}\right) \leq\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\rangle+$ $\frac{L}{2}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}$, and the fact that $\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)=\mathbf{0}$.

Now, instead of doing a line search at Step 4 of the generic scheme for the Nesterov's optimal gradient method, let us consider the constant step size iteration $\boldsymbol{x}_{k+1}:=\boldsymbol{y}_{k}-\frac{1}{L} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)$ (see proof of Theorem 8.5). From the calculations given at Exercise 1, we arrive to the following simplified scheme. Hereafter, we assume that $L>\mu$ to exclude the trivial case $L=\mu$ with finished in one iteration.

Constant Step Scheme for the Nesterov's Optimal Gradient Method	
Step 0:	Choose $\boldsymbol{x}_{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$ such that $\frac{\alpha_{0}\left(\alpha_{0} L-\mu\right)}{1-\alpha_{0}}>0, \mu \leq \frac{\alpha_{0}\left(\alpha_{0} L-\mu\right)}{1-\alpha_{0}} \leq L$,
	set $\boldsymbol{y}_{0}:=\boldsymbol{x}_{0}$ and $k:=0$.
Step 1:	Compute $\boldsymbol{\nabla}\left(\boldsymbol{y}_{k}\right)$.
Step 2:	Set $\boldsymbol{x}_{k+1}:=\boldsymbol{y}_{k}-\frac{1}{L} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)$.
Step 3:	Compute $\alpha_{k+1} \in(0,1)$ from the equation $\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+\frac{\mu}{L} \alpha_{k+1}$.
Step 4:	Set $\beta_{k}:=\frac{\alpha_{k}\left(1-\alpha_{k}\right)}{\alpha_{k}^{2}+\alpha_{k+1}}$.
Step 5:	Set $\boldsymbol{y}_{k+1}:=\boldsymbol{x}_{k+1}+\beta_{k}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right), k:=k+1$ and go to Step 1.

Observe that the sequences $\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{\infty}$ and $\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty}$ generated by the "Generic Scheme" and the "Constant Step Scheme" are exactly the same ${ }^{4}$ if we choose $\boldsymbol{x}_{k+1}:=\boldsymbol{y}_{k}-\frac{1}{L} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)$ in the former method. Therefore, the result of Theorem 8.6 is still valid for $\gamma_{0}:=\alpha_{0}\left(\alpha_{0} L-\mu\right) /\left(1-\alpha_{0}\right)$.

Also, if we further impose $\gamma_{0}=\alpha_{0}\left(\alpha_{0} L-\mu\right) /\left(1-\alpha_{0}\right)=L$, we will have the rate of convergence of Theorem 8.7.

Theorem 8.8 Consider $f \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$, possible with $\mu=0$ (which means that $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$). The constant step scheme of the Nesterov's optimal gradient method generates a sequence $\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{\infty}$ such that

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq L \min \left\{\left(1-\sqrt{\frac{\mu}{L}}\right)^{k}, \frac{4}{(k+2)^{2}}\right\}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2},
$$

and

$$
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}^{2} \leq \frac{2 L}{\mu} \min \left\{\left(1-\sqrt{\frac{\mu}{L}}\right)^{k}, \frac{4}{(k+2)^{2}}\right\}\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}^{2}
$$

This means that the method is "optimal" for the class of functions $\mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$, and $\mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$.
Proof: Since the inequalities above are already shown in the previous Corollary 8.7, it remains to show the "optimality" of the methods for each class of functions.
For the case $\mu=0$, the "optimality" of the method is obvious from Theorem 6.1.

[^0]
[^0]: ${ }^{4}$ strictly speaking, there is a one index difference between \boldsymbol{y}_{k} 's on these two methods due to the order \boldsymbol{y}_{k} is defined in the loop.

