1. Constant Step

The sequence $\left\{h_{k}\right\}_{k=0}^{\infty}$ is chosen in advance. For example

$$
\begin{aligned}
h_{k} & :=h>0 \\
h_{k} & :=\frac{h}{\sqrt{k+1}}
\end{aligned}
$$

This is the simplest strategy.

2. Exact Line Search (Cauchy Step-Size)

The sequence $\left\{h_{k}\right\}_{k=0}^{\infty}$ is chosen such that

$$
h_{k}:=\arg \min _{h \geq 0} f\left(\boldsymbol{x}_{k}-h \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right)
$$

This choice is only theoretical since even for the one dimensional case, it is very difficult and expensive.

3. Goldstein-Armijo Rule

Find a sequence $\left\{h_{k}\right\}_{k=0}^{\infty}$ such that

$$
\begin{aligned}
\alpha\left\langle\boldsymbol{\nabla}\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}_{k}-\boldsymbol{x}_{k+1}\right\rangle & \leq f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right), \\
\beta\left\langle\boldsymbol{f}\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}_{k}-\boldsymbol{x}_{k+1}\right\rangle & \geq f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right),
\end{aligned}
$$

where $0<\alpha<\beta<1$ are fixed parameters.
Since $f\left(\boldsymbol{x}_{k+1}\right)=f\left(\boldsymbol{x}_{k}-h_{k} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right)$,

$$
f\left(\boldsymbol{x}_{k}\right)-\beta h_{k}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} \leq f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{x}_{k}\right)-\alpha h_{k}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2}
$$

The acceptable steps exist unless $f\left(\boldsymbol{x}_{k+1}\right)=f\left(\boldsymbol{x}_{k}-h \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right)$ is not bounded from below.

4. Barzilai-Borwein Step-Size ${ }^{1}$

Let us define $\boldsymbol{s}_{k-1}:=\boldsymbol{x}_{k}-\boldsymbol{x}_{k-1}$ and $\boldsymbol{y}_{k-1}:=\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k-1}\right)$. Then, we can define the Barzilai-Borwein (BB) step sizes $\left\{h_{k}^{1}\right\}_{k=1}^{\infty}$ and $\left\{h_{k}^{2}\right\}_{k=1}^{\infty}$:

$$
\begin{aligned}
h_{k}^{1} & :=\frac{\left\|\boldsymbol{s}_{k-1}\right\|_{2}^{2}}{\left\langle\boldsymbol{s}_{k-1}, \boldsymbol{y}_{k-1}\right\rangle} \\
h_{k}^{2} & :=\frac{\left\langle\boldsymbol{s}_{k-1}, \boldsymbol{y}_{k-1}\right\rangle}{\left\|\boldsymbol{y}_{k-1}\right\|_{2}^{2}}
\end{aligned}
$$

The first step-size is the one which minimizes the following secant condition $\left\|\frac{1}{h} \boldsymbol{s}_{k-1}-\boldsymbol{y}_{k-1}\right\|_{2}^{2}$ while the second one minimizes $\left\|s_{k-1}-h \boldsymbol{y}_{k-1}\right\|_{2}^{2}$.

Now, consider the problem

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x})
$$

where $f \in \mathcal{C}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$, and $f(\boldsymbol{x})$ is bounded from below.

[^0]Let us evaluate the result of one step of the steepest descent method.
Consider $\boldsymbol{y}=\boldsymbol{x}-h \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})$. From Lemma 3.6,

$$
\begin{align*}
f(\boldsymbol{y}) & \leq f(\boldsymbol{x})+\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2} \\
& =f(\boldsymbol{x})-h\|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})\|_{2}^{2}+\frac{h^{2} L}{2}\|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})\|_{2}^{2} \\
& =f(\boldsymbol{x})-h\left(1-\frac{h}{2} L\right)\|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})\|_{2}^{2} \tag{5}
\end{align*}
$$

Thus, one step of the steepest descent method decreases the value of the objective function at least as follows for $h^{*}=1 / L$.

$$
f(\boldsymbol{y}) \leq f(\boldsymbol{x})-\frac{1}{2 L}\|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})\|_{2}^{2}
$$

Now, for the Goldstein-Armijo Rule, since $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-h_{k} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)$, we have:

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right) \leq \beta h_{k}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2}
$$

and from (5)

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right) \geq h_{k}\left(1-\frac{h_{k}}{2} L\right)\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2}
$$

Therefore, $h_{k} \geq 2(1-\beta) / L$.
Also, substituting in

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right) \geq \alpha h_{k}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} \geq \frac{2}{L} \alpha(1-\beta)\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2}
$$

Thus, in the three step-size strategies excepting the BB step size considered here, we can say that

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right) \geq \frac{\omega}{L}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2}
$$

for some positive constant ω.
Summing up the above inequality we have:

$$
\frac{\omega}{L} \sum_{k=0}^{N}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} \leq f\left(\boldsymbol{x}_{0}\right)-f\left(\boldsymbol{x}_{N+1}\right) \leq f\left(\boldsymbol{x}_{0}\right)-f^{*}
$$

where f^{*} is the optimal value of the problem.
As a simple consequence we have

$$
\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

Finally,

$$
\begin{equation*}
g_{N}^{*}:=\min _{0 \leq k \leq N}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2} \leq \frac{1}{\sqrt{N+1}}\left[\frac{L}{\omega}\left(f\left(\boldsymbol{x}_{0}\right)-f^{*}\right)\right]^{1 / 2} \tag{6}
\end{equation*}
$$

Remark $4.14 g_{N}^{*} \rightarrow 0$, but we cannot say anything about the rate of convergence of the sequence $\left\{f\left(\boldsymbol{x}_{k}\right)\right\}$ or $\left\{\boldsymbol{x}_{k}\right\}$.

Example 4.15 Consider the function $f(x, y)=\frac{1}{2} x^{2}+\frac{1}{4} y^{4}-\frac{1}{2} y^{2} .(0,-1)^{T}$ and $(0,1)^{T}$ are local minimal solutions, but $(0,0)^{T}$ is a stationary point.

If we start the steepest descent method from $(1,0)^{T}$, we will only converge to the stationary point.

We focus now on the following problem class:

Model:	1. $\min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x})$		
	2. $f \in \mathcal{C}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$		
	3. $f(\boldsymbol{x})$ is bounded from below		
Oracle:	Only function and gradient values are available		
Approximate solution:	Find $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$ such that $f(\overline{\boldsymbol{x}}) \leq f\left(\boldsymbol{x}_{0}\right)$ and $\\|\boldsymbol{\nabla} \boldsymbol{f}(\overline{\boldsymbol{x}})\\|_{2}<\epsilon$		

From (6), we have

$$
g_{N}^{*}<\varepsilon \quad \text { if } \quad N+1>\frac{L}{\omega \varepsilon^{2}}\left(f\left(\boldsymbol{x}_{0}\right)-f^{*}\right) .
$$

Remark 4.16 This is much better than the result of Theorem 4.6, since it does not depend on n.
Finally, consider the following problem under Assumption 4.17.

Assumption 4.17

1. $f \in \mathcal{C}_{M}^{2,2}\left(\mathbb{R}^{n}\right)$;
2. There is a local minimum \boldsymbol{x}^{*} of the function $f(\boldsymbol{x})$;
3. We know some bound $0<\ell \leq L<\infty$ for the Hessian at \boldsymbol{x}^{*} :

$$
\ell \boldsymbol{I} \preceq \nabla^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right) \preceq L \boldsymbol{I} ;
$$

4. Our starting point \boldsymbol{x}_{0} is close enough to \boldsymbol{x}^{*}.

Theorem 4.18 Let $f(\boldsymbol{x})$ satisfy our assumptions above and let the starting point \boldsymbol{x}_{0} be close enough to a local minimum:

$$
r_{0}=\left\|x_{0}-\boldsymbol{x}^{*}\right\|_{2}\left\langle\bar{r}:=\frac{2 \ell}{M} .\right.
$$

Then, the steepest descent method with step-size $h^{*}=2 /(L+\ell)$ converges as follows:

$$
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2} \leq \frac{\bar{r} r_{0}}{\bar{r}-r_{0}}\left(1-\frac{2 \ell}{L+3 \ell}\right)^{k}
$$

This rate of convergence is called (R -) linear.
Proof:
In the steepest descent method, the iterates are $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-h_{k} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)$.
Since $\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)=0$,

$$
\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)=\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)=\int_{0}^{1} \nabla^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}+\tau\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right)\right)\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right) d \tau=\boldsymbol{G}_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right),
$$

and therefore,

$$
\boldsymbol{x}_{k+1}-\boldsymbol{x}^{*}=\boldsymbol{x}_{k}-\boldsymbol{x}^{*}-h_{k} \boldsymbol{G}_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right)=\left(\boldsymbol{I}-h_{k} \boldsymbol{G}_{k}\right)\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right) .
$$

Let $r_{k}=\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}$. From Lemma 3.8,

$$
\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)-\tau M r_{k} \boldsymbol{I} \preceq \boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}+\tau\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right)\right) \preceq \boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)+\tau M r_{k} \boldsymbol{I} .
$$

Integrating all parts from 0 to 1 and using our hypothesis,

$$
\left(\ell-\frac{r_{k}}{2} M\right) \boldsymbol{I} \preceq \boldsymbol{G}_{k} \preceq\left(L+\frac{r_{k}}{2} M\right) \boldsymbol{I} .
$$

Therefore,

$$
\left(1-h_{k}\left(L+\frac{r_{k}}{2} M\right)\right) \boldsymbol{I} \preceq \boldsymbol{I}-h_{k} \boldsymbol{G}_{k} \preceq\left(1-h_{k}\left(\ell-\frac{r_{k}}{2} M\right)\right) \boldsymbol{I} .
$$

We arrive at

$$
\left\|\boldsymbol{I}-h_{k} \boldsymbol{G}_{k}\right\|_{2} \leq \max \left\{\left|a_{k}\left(h_{k}\right)\right|,\left|b_{k}\left(h_{k}\right)\right|\right\}
$$

where $a_{k}(h)=1-h\left(\ell-\frac{r_{k}}{2} M\right)$ and $b_{k}(h)=h\left(L+\frac{r_{k}}{2} M\right)-1$.
Notice that $a_{k}(0)=1$ and $b_{k}(0)=-1$.
Now, let us use our hypothesis that $r_{0}<\bar{r}$.
When $a_{k}(h)=b_{k}(h)$, we have $1-h\left(\ell-\frac{r_{k}}{2} M\right)=h\left(L+\frac{r_{k}}{2} M\right)-1$, and therefore

$$
h_{k}^{*}=\frac{2}{L+\ell} .
$$

(Surprisingly, it does not depend neither on M nor r_{k}). Finally,

$$
r_{k+1}=\left\|\boldsymbol{x}_{k+1}-\boldsymbol{x}^{*}\right\|_{2} \leq\left(1-\frac{2}{L+\ell}\left(\ell-\frac{r_{k}}{2} M\right)\right)\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2} .
$$

That is,

$$
r_{k+1} \leq\left(\frac{L-\ell}{L+\ell}+\frac{r_{k} M}{L+\ell}\right) r_{k} .
$$

and $r_{k+1}<r_{k}<\bar{r}$.
Now, let us analyze the rate of convergence. Multiplying the above inequality by $M /(L+\ell)$,

$$
\frac{M r_{k+1}}{L+\ell} \leq \frac{M(L-\ell)}{(L+\ell)^{2}} r_{k}+\frac{M^{2} r_{k}^{2}}{(L+\ell)^{2}} .
$$

Calling $\alpha_{k}=\frac{M r_{k}}{L+\ell}$ and $q=\frac{2 \ell}{L+\ell}$, we have

$$
\begin{equation*}
\alpha_{k+1} \leq(1-q) \alpha_{k}+\alpha_{k}^{2}=\alpha_{k}\left(1+\alpha_{k}-q\right)=\frac{\alpha_{k}\left(1-\left(\alpha_{k}-q\right)^{2}\right)}{1-\left(\alpha_{k}-q\right)} . \tag{7}
\end{equation*}
$$

Now, since $r_{k}<\frac{2 \ell}{M}, \alpha_{k}-q=\frac{M r_{k}}{L+\ell}-\frac{2 \ell}{L+\ell}<0$, and $1+\left(\alpha_{k}-q\right)=\frac{L-\ell}{L+\ell}+\frac{M r_{k}}{L+\ell}>0$. Therefore, $-1<\alpha_{k}-q<0$, and (7) becomes $\leq \frac{\alpha_{k}}{1+q-\alpha_{k}}$.

$$
\begin{gathered}
\frac{1}{\alpha_{k+1}} \geq \frac{1+q}{\alpha_{k}}-1 . \\
\frac{q}{\alpha_{k+1}}-1 \geq \frac{q(1+q)}{\alpha_{k}}-q-1=(1+q)\left(\frac{q}{\alpha_{k}}-1\right) .
\end{gathered}
$$

and then,

$$
\frac{q}{\alpha_{k}}-1 \geq(1+q)^{k}\left(\frac{q}{\alpha_{0}}-1\right)=(1+q)^{k}\left(\frac{2 \ell}{L+\ell} \frac{L+\ell}{M r_{0}}-1\right)=(1+q)^{k}\left(\frac{\bar{r}}{r_{0}}-1\right) .
$$

Finally, we arrive at

$$
r_{k}=\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2} \leq \frac{\bar{r} r_{0}}{\bar{r}-r_{0}}\left(1-\frac{2 \ell}{L+3 \ell}\right)^{k} .
$$

[^0]: ${ }^{1}$ J. Barzilai and J. M. Borwein, "Two-point step size gradient methods," IMA Journal of Numerical Analysis, $\mathbf{8}$ (1988), pp. 141-148.

