
Definition 8.1 A pair of sequences {ϕk(x)}∞k=0 and {λk}∞k=0 with λk ≥ 0 is called an estimate
sequence of the function f(x) if

λk → 0,

and for any x ∈ Rn and any k ≥ 0, we have

ϕk(x) ≤ (1− λk)f(x) + λkϕ0(x).

Lemma 8.2 Given an estimate sequence {ϕk(x)}∞k=0, {λk}∞k=0, and if for some sequence {xk}∞k=0

we have
f(xk) ≤ ϕ∗

k := min
x∈Rn

ϕk(x)

then f(xk)− f(x∗) ≤ λk(ϕ0(x
∗)− f(x∗)) → 0.

Proof:
It follows from the definition.

Lemma 8.3 Assume that

1. f ∈ S1
µ(Rn), possible with µ = 0 (which means that f ∈ F1(Rn)).

2. ϕ0(x) is an arbitrary function on Rn.

3. {yk}∞k=0 is an arbitrary sequence in Rn.

4. {αk}∞k=−1 is an arbitrary sequence such that α−1 = 0, αk ∈ (0, 1] (k = 0, 1, . . .), and

∞∑
k=0

αk =

∞.

Then the pair of sequences

{
k−1∏
i=−1

(1− αi)

}∞

k=0

and {ϕk(x)}∞k=0 recursively defined as

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(yk) + ⟨∇f(yk),x− yk⟩+

µ

2
∥x− yk∥22

]

is an estimate sequence.

Proof:
Let us prove by induction in k. For k = 0, ϕ0(x) = (1− (1− α−1)) f(x) + (1− α−1)ϕ0(x) since

α−1 = 0. Suppose that the induction hypothesis is valid for any index equal or smaller than k.
Since f ∈ S1

µ(Rn),

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(yk) + ⟨∇f(yk),x− yk⟩+

µ

2
∥x− yk∥22

]
≤ (1− αk)ϕk(x) + αkf(x)

=

(
1− (1− αk)

k−1∏
i=−1

(1− αi)

)
f(x) + (1− αk)

(
ϕk(x)−

(
1−

k−1∏
i=−1

(1− αi)

)
f(x)

)

≤

(
1− (1− αk)

k−1∏
i=−1

(1− αi)

)
f(x) + (1− αk)

k−1∏
i=−1

(1− αi)ϕ0(x)

=

(
1−

k∏
i=−1

(1− αi)

)
f(x) +

k∏
i=−1

(1− αi)ϕ0(x).
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Now, it remains to show that
∏k−1

i=−1(1−αi) → 0. This is equivalent to show that log
∏k−1

i=−1(1−
αi) → −∞. Using the inequality log(1− α) ≤ −α for α ∈ (−∞, 1), we have

log

k−1∏
i=−1

(1− αi) =

k−1∑
i=−1

log(1− αi) ≤ −
k−1∑
i=−1

αi → −∞

due to our assumption.

Lemma 8.4 Let f : Rn → R be an arbitrary continuously differentiable function. Also let ϕ∗
0 ∈ R,

µ ≥ 0, γ0 ≥ 0, v0 ∈ Rn, {yk}∞k=0, and {αk}∞k=0 given arbitrarily sequences such that α−1 = 0,
αk ∈ (0, 1] (k = 0, 1, . . .). In the special case of µ = 0, we further assume that γ0 > 0 and
αk < 1 (k = 0, 1, . . .). Let ϕ0(x) = ϕ∗

0 +
γ0
2 ∥x− v0∥22. If we define recursively ϕk+1(x) such as the

previous lemma:

ϕk+1(x) = (1− αk)ϕk(x) + αk

[
f(yk) + ⟨∇f(yk),x− yk⟩+

µ

2
∥x− yk∥22

]
,

then ϕk+1(x) preserve the canonical form

ϕk+1(x) = ϕ∗
k+1 +

γk+1

2
∥x− vk+1∥22 (13)

for

γk+1 = (1− αk)γk + αkµ,

vk+1 =
1

γk+1
[(1− αk)γkvk + αkµyk − αk∇f(yk)],

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(yk)−

α2
k

2γk+1
∥∇f(yk)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨∇f(yk),vk − yk⟩

)
.

Proof:
We will use again the induction hypothesis in k. Note that ∇2ϕ0(x) = γ0I. Now, for any k ≥ 0,

∇2ϕk+1(x) = (1− αk)∇2ϕk(x) + αkµI = ((1− αk)γk + αkµ) I = γk+1I.

Therefore, ϕk+1(x) is a quadratic function of the form (13). Also, γk+1 > 0 since µ > 0 and
αk > 0 (k = 0, 1, . . .); or if µ = 0, we assumed that γ0 > 0 and αk ∈ (0, 1) (k = 0, 1, . . .).

From the first-order optimality condition

∇ϕk+1(x) = (1− αk)∇ϕk(x) + αk∇f(yk) + αkµ(x− yk)

= (1− αk)γk(x− vk) + αk∇f(yk) + αkµ(x− yk) = 0.

Thus,

x = vk+1 =
1

γk+1
[(1− αk)γkvk + αkµyk − αk∇f(yk)]

is the minimal optimal solution of ϕk+1(x).
Finally, from what we proved so far and from the definition

ϕk+1(yk) = ϕ∗
k+1 +

γk+1

2 ∥yk − vk+1∥22
= (1− αk)ϕk(yk) + αkf(yk)
= (1− αk)

(
ϕ∗
k +

γk
2 ∥yk − vk∥22

)
+ αkf(yk).

(14)
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Now,

vk+1 − yk =
1

γk+1
[(1− αk)γk(vk − yk)− αk∇f(yk)] .

Therefore,

γk+1

2 ∥vk+1 − yk∥22 = 1
2γk+1

[
(1− αk)

2γ2k∥vk − yk∥22 + α2
k∥∇f(yk)∥22

−2αk(1− αk)γk⟨∇f(yk),vk − yk⟩] .
(15)

Substituting (15) into (14), we obtain the expression for ϕ∗
k+1.

Theorem 8.5 Let L ≥ µ ≥ 0. Consider f ∈ S1,1
µ,L(R

n), possible with µ = 0 (which means that

f ∈ F1,1
L (Rn)). For given x0 ∈ Rn, let us choose ϕ∗

0 = f(x0) and v0 := x0. Consider also γ0 > 0
such that L ≥ γ0 ≥ µ ≥ 0. Define the sequences {αk}∞k=−1, {γk}∞k=0, {yk}∞k=0, {xk}∞k=0, {vk}∞k=0,
{ϕ∗

k}∞k=0, and {ϕk(x)}∞k=0 for the iteration k starting at k := 0:

α−1 = 0,

αk ∈ (0, 1] root of Lα2
k = (1− αk)γk + αkµ := γk+1,

yk =
αkγkvk + γk+1xk

γk + αkµ
,

xk+1 is such that f(xk+1) ≤ f(yk)−
1

2L
∥∇f(yk)∥22,

vk+1 =
1

γk+1
[(1− αk)γkvk + αkµyk − αk∇f(yk)],

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(yk)−

α2
k

2γk+1
∥∇f(yk)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨∇f(yk),vk − yk⟩

)
,

ϕk+1(x) = ϕ∗
k+1 +

γk+1

2
∥x− vk+1∥22.

Then, we satisfy all the conditions of Lemma 8.2 for λk =
k−1∏
i=−1

(1− αi).

Proof:
In fact, due to Lemmas 8.3 and 8.4, it just remains to show that αk ∈ (0, 1] for (k = 0, 1, . . .)

such that
∞∑
k=0

αk = ∞. In the special case of µ = 0, we must show that αk < 1 (k = 0, 1, . . .). And

finally that f(xk) ≤ ϕ∗
k.

Let us show both using induction hypothesis.
Consider the quadratic equation in α, q0(α) := Lα2 + (γ0 − µ)α − γ0 = 0. Notice that its

discriminant ∆ := (γ0−µ)2+4γ0L is always positive by the hypothesis. Also, q0(0) = −γ0 < 0, due
to the hypothesis again. Therefore, this equation always has a root α0 > 0. Since q0(1) = L−µ ≥ 0,
α0 ≤ 1, and we have α0 ∈ (0, 1]. If µ = 0, and α0 = 1, we will have L = 0 which implies γ0 = 0
which contradicts our hypothesis. Then α0 < 1 in this case. In addition, γ1 := (1−α0)γ0+α0µ > 0
and γ0 + α0µ > 0. The same arguments are valid for any k. Therefore, αk ∈ (0, 1], and αk <
1 (k = 0, 1, . . . , ) if µ = 0.

Finally, Lα2
k = (1−αk)γk +αkµ ≥ (1−αk)µ+αkµ = µ. And we have αk ≥

√
µ
L , and therefore,

∞∑
k=0

αk = ∞, if µ > 0. For the case µ = 0, the argument is the same as the proof of Theorem 8.6.
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