Definition 8.1 A pair of sequences $\{\phi_k(\boldsymbol{x})\}_{k=0}^{\infty}$ and $\{\lambda_k\}_{k=0}^{\infty}$ with $\lambda_k \geq 0$ is called an *estimate* sequence of the function $f(\boldsymbol{x})$ if

 $\lambda_k \to 0,$

and for any $\boldsymbol{x} \in \mathbb{R}^n$ and any $k \ge 0$, we have

$$\phi_k(\boldsymbol{x}) \leq (1 - \lambda_k) f(\boldsymbol{x}) + \lambda_k \phi_0(\boldsymbol{x}).$$

Lemma 8.2 Given an estimate sequence $\{\phi_k(\boldsymbol{x})\}_{k=0}^{\infty}$, $\{\lambda_k\}_{k=0}^{\infty}$, and if for some sequence $\{\boldsymbol{x}_k\}_{k=0}^{\infty}$ we have

$$f(oldsymbol{x}_k) \leq \phi_k^* := \min_{oldsymbol{x} \in \mathbb{R}^n} \phi_k(oldsymbol{x})$$

then $f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*) \le \lambda_k(\phi_0(\boldsymbol{x}^*) - f(\boldsymbol{x}^*)) \to 0.$

Proof:

It follows from the definition.

Lemma 8.3 Assume that

- 1. $f \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$, possible with $\mu = 0$ (which means that $f \in \mathcal{F}^1(\mathbb{R}^n)$).
- 2. $\phi_0(\boldsymbol{x})$ is an arbitrary function on \mathbb{R}^n .
- 3. $\{\boldsymbol{y}_k\}_{k=0}^{\infty}$ is an arbitrary sequence in \mathbb{R}^n .
- 4. $\{\alpha_k\}_{k=-1}^{\infty}$ is an arbitrary sequence such that $\alpha_{-1} = 0, \alpha_k \in (0, 1]$ $(k = 0, 1, ...), \text{ and } \sum_{k=0}^{\infty} \alpha_k = \infty.$

Then the pair of sequences $\left\{\prod_{i=-1}^{k-1} (1-\alpha_i)\right\}_{k=0}^{\infty}$ and $\{\phi_k(\boldsymbol{x})\}_{k=0}^{\infty}$ recursively defined as

$$\phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left[f(\boldsymbol{y}_k) + \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|_2^2 \right]$$

is an estimate sequence.

Proof:

Let us prove by induction in k. For k = 0, $\phi_0(\mathbf{x}) = (1 - (1 - \alpha_{-1})) f(\mathbf{x}) + (1 - \alpha_{-1})\phi_0(\mathbf{x})$ since $\alpha_{-1} = 0$. Suppose that the induction hypothesis is valid for any index equal or smaller than k. Since $f \in S^1_{\mu}(\mathbb{R}^n)$,

$$\begin{split} \phi_{k+1}(\boldsymbol{x}) &= (1-\alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left[f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \| \boldsymbol{x} - \boldsymbol{y}_k \|_2^2 \right] \\ &\leq (1-\alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k f(\boldsymbol{x}) \\ &= \left(1 - (1-\alpha_k) \prod_{i=-1}^{k-1} (1-\alpha_i) \right) f(\boldsymbol{x}) + (1-\alpha_k) \left(\phi_k(\boldsymbol{x}) - \left(1 - \prod_{i=-1}^{k-1} (1-\alpha_i) \right) f(\boldsymbol{x}) \right) \\ &\leq \left(1 - (1-\alpha_k) \prod_{i=-1}^{k-1} (1-\alpha_i) \right) f(\boldsymbol{x}) + (1-\alpha_k) \prod_{i=-1}^{k-1} (1-\alpha_i) \phi_0(\boldsymbol{x}) \\ &= \left(1 - \prod_{i=-1}^k (1-\alpha_i) \right) f(\boldsymbol{x}) + \prod_{i=-1}^k (1-\alpha_i) \phi_0(\boldsymbol{x}). \end{split}$$

Now, it remains to show that $\prod_{i=-1}^{k-1}(1-\alpha_i) \to 0$. This is equivalent to show that $\log \prod_{i=-1}^{k-1}(1-\alpha_i) \to -\infty$. Using the inequality $\log(1-\alpha) \leq -\alpha$ for $\alpha \in (-\infty, 1)$, we have

$$\log \prod_{i=-1}^{k-1} (1 - \alpha_i) = \sum_{i=-1}^{k-1} \log(1 - \alpha_i) \le -\sum_{i=-1}^{k-1} \alpha_i \to -\infty$$

due to our assumption.

Lemma 8.4 Let $f : \mathbb{R}^n \to \mathbb{R}$ be an arbitrary continuously differentiable function. Also let $\phi_0^* \in \mathbb{R}$, $\mu \geq 0, \gamma_0 \geq 0, v_0 \in \mathbb{R}^n, \{y_k\}_{k=0}^{\infty}$, and $\{\alpha_k\}_{k=0}^{\infty}$ given arbitrarily sequences such that $\alpha_{-1} = 0$, $\alpha_k \in (0,1]$ (k = 0, 1, ...). In the special case of $\mu = 0$, we further assume that $\gamma_0 > 0$ and $\alpha_k < 1$ (k = 0, 1, ...). Let $\phi_0(\boldsymbol{x}) = \phi_0^* + \frac{\gamma_0}{2} \|\boldsymbol{x} - \boldsymbol{v}_0\|_2^2$. If we define recursively $\phi_{k+1}(\boldsymbol{x})$ such as the previous lemma:

$$\phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left[f(\boldsymbol{y}_k) + \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|_2^2 \right],$$

then $\phi_{k+1}(\boldsymbol{x})$ preserve the canonical form

$$\phi_{k+1}(\boldsymbol{x}) = \phi_{k+1}^* + \frac{\gamma_{k+1}}{2} \|\boldsymbol{x} - \boldsymbol{v}_{k+1}\|_2^2$$
(13)

for

$$\begin{split} \gamma_{k+1} &= (1-\alpha_k)\gamma_k + \alpha_k\mu, \\ \boldsymbol{v}_{k+1} &= \frac{1}{\gamma_{k+1}}[(1-\alpha_k)\gamma_k\boldsymbol{v}_k + \alpha_k\mu\boldsymbol{y}_k - \alpha_k\boldsymbol{\nabla}\boldsymbol{f}(\boldsymbol{y}_k)], \\ \phi_{k+1}^* &= (1-\alpha_k)\phi_k^* + \alpha_kf(\boldsymbol{y}_k) - \frac{\alpha_k^2}{2\gamma_{k+1}}\|\boldsymbol{\nabla}\boldsymbol{f}(\boldsymbol{y}_k)\|_2^2 \\ &\quad + \frac{\alpha_k(1-\alpha_k)\gamma_k}{\gamma_{k+1}}\left(\frac{\mu}{2}\|\boldsymbol{y}_k - \boldsymbol{v}_k\|_2^2 + \langle\boldsymbol{\nabla}\boldsymbol{f}(\boldsymbol{y}_k), \boldsymbol{v}_k - \boldsymbol{y}_k\rangle\right). \end{split}$$

Proof:

We will use again the induction hypothesis in k. Note that $\nabla^2 \phi_0(x) = \gamma_0 I$. Now, for any $k \ge 0$,

$$\nabla^2 \boldsymbol{\phi}_{k+1}(\boldsymbol{x}) = (1 - \alpha_k) \nabla^2 \boldsymbol{\phi}_k(\boldsymbol{x}) + \alpha_k \mu \boldsymbol{I} = ((1 - \alpha_k) \gamma_k + \alpha_k \mu) \boldsymbol{I} = \gamma_{k+1} \boldsymbol{I}$$

Therefore, $\phi_{k+1}(\boldsymbol{x})$ is a quadratic function of the form (13). Also, $\gamma_{k+1} > 0$ since $\mu > 0$ and $\alpha_k > 0$ (k = 0, 1, ...); or if $\mu = 0$, we assumed that $\gamma_0 > 0$ and $\alpha_k \in (0, 1)$ (k = 0, 1, ...).

From the first-order optimality condition

$$\begin{aligned} \boldsymbol{\nabla}\boldsymbol{\phi}_{k+1}(\boldsymbol{x}) &= (1-\alpha_k)\boldsymbol{\nabla}\boldsymbol{\phi}_k(\boldsymbol{x}) + \alpha_k\boldsymbol{\nabla}\boldsymbol{f}(\boldsymbol{y}_k) + \alpha_k\mu(\boldsymbol{x}-\boldsymbol{y}_k) \\ &= (1-\alpha_k)\gamma_k(\boldsymbol{x}-\boldsymbol{v}_k) + \alpha_k\boldsymbol{\nabla}\boldsymbol{f}(\boldsymbol{y}_k) + \alpha_k\mu(\boldsymbol{x}-\boldsymbol{y}_k) = 0. \end{aligned}$$

Thus,

$$oldsymbol{x} = oldsymbol{v}_{k+1} = rac{1}{\gamma_{k+1}} \left[(1 - lpha_k) \gamma_k oldsymbol{v}_k + lpha_k \mu oldsymbol{y}_k - lpha_k
abla oldsymbol{f}(oldsymbol{y}_k)
ight]$$

is the minimal optimal solution of $\phi_{k+1}(\boldsymbol{x})$.

Finally, from what we proved so far and from the definition

$$\phi_{k+1}(\boldsymbol{y}_k) = \phi_{k+1}^* + \frac{\gamma_{k+1}}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_{k+1}\|_2^2$$

= $(1 - \alpha_k)\phi_k(\boldsymbol{y}_k) + \alpha_k f(\boldsymbol{y}_k)$
= $(1 - \alpha_k)\left(\phi_k^* + \frac{\gamma_k}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_k\|_2^2\right) + \alpha_k f(\boldsymbol{y}_k).$ (14)

Now,

$$oldsymbol{v}_{k+1} - oldsymbol{y}_k = rac{1}{\gamma_{k+1}} \left[(1 - lpha_k) \gamma_k (oldsymbol{v}_k - oldsymbol{y}_k) - lpha_k oldsymbol{
abla} oldsymbol{f}(oldsymbol{y}_k)
ight]$$

Therefore,

$$\frac{\gamma_{k+1}}{2} \|\boldsymbol{v}_{k+1} - \boldsymbol{y}_k\|_2^2 = \frac{1}{2\gamma_{k+1}} \left[(1 - \alpha_k)^2 \gamma_k^2 \|\boldsymbol{v}_k - \boldsymbol{y}_k\|_2^2 + \alpha_k^2 \|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}_k)\|_2^2 - 2\alpha_k (1 - \alpha_k) \gamma_k \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}_k), \boldsymbol{v}_k - \boldsymbol{y}_k \rangle \right].$$
(15)

Substituting (15) into (14), we obtain the expression for ϕ_{k+1}^* .

Theorem 8.5 Let $L \ge \mu \ge 0$. Consider $f \in S_{\mu,L}^{1,1}(\mathbb{R}^n)$, possible with $\mu = 0$ (which means that $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$). For given $\mathbf{x}_0 \in \mathbb{R}^n$, let us choose $\phi_0^* = f(\mathbf{x}_0)$ and $\mathbf{v}_0 := \mathbf{x}_0$. Consider also $\gamma_0 > 0$ such that $L \ge \gamma_0 \ge \mu \ge 0$. Define the sequences $\{\alpha_k\}_{k=-1}^{\infty}, \{\gamma_k\}_{k=0}^{\infty}, \{\mathbf{y}_k\}_{k=0}^{\infty}, \{\mathbf{x}_k\}_{k=0}^{\infty}, \{\mathbf{v}_k\}_{k=0}^{\infty}, \{\mathbf{v}_k\}_{$

$$\begin{aligned} \alpha_{-1} &= 0, \\ \alpha_k \in (0,1] \quad \text{root of} \quad L\alpha_k^2 &= (1-\alpha_k)\gamma_k + \alpha_k\mu := \gamma_{k+1}, \\ \boldsymbol{y}_k &= \quad \frac{\alpha_k \gamma_k \boldsymbol{v}_k + \gamma_{k+1} \boldsymbol{x}_k}{\gamma_k + \alpha_k \mu}, \\ \boldsymbol{x}_{k+1} \quad \text{is such that} \quad f(\boldsymbol{x}_{k+1}) \leq f(\boldsymbol{y}_k) - \frac{1}{2L} \|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}_k)\|_2^2, \\ \boldsymbol{v}_{k+1} &= \quad \frac{1}{\gamma_{k+1}} [(1-\alpha_k)\gamma_k \boldsymbol{v}_k + \alpha_k \mu \boldsymbol{y}_k - \alpha_k \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}_k)], \\ \phi_{k+1}^* &= \quad (1-\alpha_k)\phi_k^* + \alpha_k f(\boldsymbol{y}_k) - \frac{\alpha_k^2}{2\gamma_{k+1}} \|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}_k)\|_2^2 \\ &+ \frac{\alpha_k (1-\alpha_k)\gamma_k}{\gamma_{k+1}} \left(\frac{\mu}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_k\|_2^2 + \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}_k), \boldsymbol{v}_k - \boldsymbol{y}_k \rangle \right) \\ \phi_{k+1}(\boldsymbol{x}) &= \quad \phi_{k+1}^* + \frac{\gamma_{k+1}}{2} \|\boldsymbol{x} - \boldsymbol{v}_{k+1}\|_2^2. \end{aligned}$$

Then, we satisfy all the conditions of Lemma 8.2 for $\lambda_k = \prod_{i=-1}^{k-1} (1 - \alpha_i)$.

Proof:

In fact, due to Lemmas 8.3 and 8.4, it just remains to show that $\alpha_k \in (0, 1]$ for (k = 0, 1, ...)such that $\sum_{k=0}^{\infty} \alpha_k = \infty$. In the special case of $\mu = 0$, we must show that $\alpha_k < 1$ (k = 0, 1, ...). And finally that $f(\boldsymbol{x}_k) \leq \phi_k^*$.

Let us show both using induction hypothesis.

Consider the quadratic equation in α , $q_0(\alpha) := L\alpha^2 + (\gamma_0 - \mu)\alpha - \gamma_0 = 0$. Notice that its discriminant $\Delta := (\gamma_0 - \mu)^2 + 4\gamma_0 L$ is always positive by the hypothesis. Also, $q_0(0) = -\gamma_0 < 0$, due to the hypothesis again. Therefore, this equation always has a root $\alpha_0 > 0$. Since $q_0(1) = L - \mu \ge 0$, $\alpha_0 \le 1$, and we have $\alpha_0 \in (0, 1]$. If $\mu = 0$, and $\alpha_0 = 1$, we will have L = 0 which implies $\gamma_0 = 0$ which contradicts our hypothesis. Then $\alpha_0 < 1$ in this case. In addition, $\gamma_1 := (1 - \alpha_0)\gamma_0 + \alpha_0\mu > 0$ and $\gamma_0 + \alpha_0\mu > 0$. The same arguments are valid for any k. Therefore, $\alpha_k \in (0, 1]$, and $\alpha_k < 1$ ($k = 0, 1, \ldots$) if $\mu = 0$.

Finally, $L\alpha_k^2 = (1 - \alpha_k)\gamma_k + \alpha_k\mu \ge (1 - \alpha_k)\mu + \alpha_k\mu = \mu$. And we have $\alpha_k \ge \sqrt{\frac{\mu}{L}}$, and therefore, $\sum_{k=0}^{\infty} \alpha_k = \infty$, if $\mu > 0$. For the case $\mu = 0$, the argument is the same as the proof of Theorem 8.6.