Remark 5.16 Strongly convex functions are different from strictly convex functions. For instance,
f(x) = z* is strictly convex at 2 = 0 but it is not strongly convex at the same point.

Corollary 5.17 If f € SL(]R") and V f(x*) = 0, then

o1 * .
fla) 2 f(@") + Gulle —z 12, VaeR™

Proof:
Left for exercise. 1

Theorem 5.18 Let f be a continuously differentiable function. The following conditions are equiv-
alent:

1. feSLRM.
2. plle —yll3 <(Vf(x)-Vf(y),z—y), Ve,yecR"
3. flax+ (1—a)y) + ol —a)5lle -yl < af(x) + (1 —a)f(y), Ve,y € R", Va € [0,1].

Proof:
Left for exercise. ]

Theorem 5.19 If f € S}L(R"), we have
L fy) < f(@) +(VF(x),y —x) + 5, VF(x) - VF(y)3, Vo, y € R,

2. (Vf(x) - Vf(y).z—y) < . |IVF(x) - VI3, Vo y cR"

Proof:
Let us fix « € R", and define the function ¢(y) = f(y) — (Vf(x),y). Clearly, ¢ € S}l(R”).
Also, one minimal solution is . Therefore,

s(@) = min ¢(v) > min [¢(y) + (Vo(y),v —y) + Elv - yl3
veR veR 2

- ¢<y>—ir\v¢<y>||§

as wished. Adding two copies of the 1 with @ and y interchanged, we get 2. 1

Remark 5.20 The converse of Theorem 5.19 is not valid. For instance, consider f(z1,z2) = 1:%—1:%,

i = 1. Then the inequalities 1. and 2. are satisfied but f ¢ S}L(RQ) for any p > 0.

Theorem 5.21 Let f be a twice continuously differentiable function. Then f € SZ(R") if and only
if
V2f(x) = pI, YaxecR™

Proof:
Left for exercise. I

Corollary 5.22 Let f be a twice continuously differentiable function. Then f € SilL(R”) if and
only if
LI > V?f(x) = pl, Yz eR"

Proof:
Left for exercise. ]
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Theorem 5.23 If f € S;’IL(R"), then
uL
w+ L

Proof:
If o = L, from Theorem 5.18 and the definition of C}L(R"),

o =yl + 7 IV (@) = VIW)IE < (VH(@) = VF().a~ ). Vay € R

(Vi@)-Vi)z-y) > Sle—ylB+5le -yl

W 1
2 gle—yli+ g IVF@) - Vil

and the result follows.
If 4 < L, let us define ¢(x) = f(x) — 4l|lz[3. Then Vo(z) = Vf(z) — px and (Vo(x) —

Vé(y).z—y) = (Vf(@) - VI(y).z—y) - pule—y|3 < (L—p)|z -y since f € C;H(R"). Also
(Vo(x) — Vo(y),z —y) > plle — y||3 — plle — yl|3 = 0 due to Theorem 5.18. Therefore, from
Theorem 5.13, ¢ € flL’iu(R”).

We have now (Vo (x) -V (y),z—y) > ﬁ||V¢(m)—V¢(y)H% from Theorem 5.13. Therefore

1
(Vf(@) -V z-y) > plz—yl+— LIVE@ — Vi) —p@ - y)ll5
2 1 o 2p
= ulz—yli+ 7 ——IVF@) = VIl - (Vf(x) - Vf(y),z ~y)
— L—p
2
1
e =yl
and the result follows after some simplifications. 1
5.5 Exercises
1. Given a convex set S C R" and an arbitrarily norm || - || in R", define the distance of a point

x € R” to the set S as
dist(x, S) := inf ||z — y||.
ist ( ) éeSH Yyl

Show that the distance function dist(x, S) is convex on x.

2. Give an example of a function f : R — R and a nonempty set C' C R illustrating each of the
following facts:

(a) fis non convex on R, C is convex, and f is convex on C.

(b) f is non convex on R, C' is non convex, and f is convex on C.

3. Prove Theorem 5.5.
4. Prove Theorem 5.7.
5. Prove Theorem 5.8.
6. Prove Lemma 5.9.

7. Prove Corollary 5.12.

8. Prove Corollary 5.17.
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9. Prove Theorem 5.18.
10. Prove Theorem 5.21.

11. Prove Corollary 5.22.

6 Worse Case Analysis for Gradient Based Methods

6.1 Lower Complexity Bound for the class F;'(R")

xp € xo +span{V f(x9),Vf(x1),...,Vf(xr_1)}, k>1.

Gradient Based Method: Iterative method M generated by a sequence such that

Consider the problem class as follows

min f(x
xcR" f@)
Model:
feFr®Y
Oracle: Only function and gradient values are available
Approximate solution: | Find & € R" such that f(z) — f(z*) < e

that for any gradient based method of type M, we have

3L||zo — z*|3

flzr) — f(z*) > T I2

1
s, — |3 g”wo—w*H%a

v

where * is the minimum of f(x).

Proof:

00

Theorem 6.1 For any 1 < k < ”T_l, and any zo € R", there exists a function f € F

1(R™) such

This type of methods are invariant with respect to a simultaneous shift of all objects in the

space of variables. Therefore, we can assume that oy = 0.
Consider the family of quadratic functions

L1 2 S 2 2
fol@) =745 el + (2l — [&liv1)” + [2]i| —[zlip, k=12
i=1
We can see that
for k=1, fi(zx)=%([=]7 - [z]1),
for k=2, fo(a) = £([=]} + [=]3 — [zh[z]> — [x]1),
for k=3, fo(@) = L([f? + [2]3 + [2]3 — [zhlw]: — [@]sfe)s — o)1)
Therefore, fy(z) = % [3(Ayz, ) — (€1, )], where e; = (1,0,...,0)7, and
2 -1 0 0
-1 2 -1 0
a_| 0 12 0 Opns
.
0 0 -1 2
On_ch On—k,n—k



Also, Vfi(z) = L(Ayz —e1) and V2 ) (z) = £ Ay, After some calculations, we can show that
LI = V%f.(x) = O for k = 1,2,...,n, and therefore, fi(x) € ]:Eo’l(]R”), for k =1,2,...,n, due
to Corollary 5.12.

Then

e = 5 (14 )
11— i=1,2,....k

s
, i=k+1,k+2,...,n,

=

——
(@)

are the minimum value and the minimal solution for fi(-), respectively.

Now, for 1 < k < 251 let us define f(x) := for+1(x), and therefore &* 1= Tap 7.

Note that x; € xo + span{V f(xo), Vf(x1),..., Vf(xr_1)} for &y = 0. Moreover, since
Vfi(x)= %(Aka: —ey), [xx]p = 0 for p > k. Therefore, fy(xr) = fr(xy) for p > k.

Then fork:1,2,...,L”T_1j,

flxr) — f(x") = forrr(r) — forr1(@arg1) = fr(Tr) — é <—1 + 1 >

2% + 2
L 1 L | L 1
> fu(@n) - = (1 _ o — )5 (4
= fi(@r) 8< +2k+2> 8( +/<+1> 8< +2k+2>
L
- 16(k+1)°

We can obtain after some calculations,

2k+1 i 2
oo ol = -t = X (15
2k+1 . 1 2k+1
= 2%+4+1-— 2
bl ; 2k +2  (2k+2)? ;Z
202k +2)(2k+1)  (2k+1+1)3
< 2%41-
= ek Qk+2)2 302k +2)
_ k1)
= T3
Then
fa)-f@) L 3
lzo — "2 = 16(k+ 1) 20k + 1)’
Also

2k+1 2k+1 i 2
loe a5 = llox —Zzrils > Y (@aeil)’ = ) (1 )

i=k+1 i=k+1 2k +2
_opeg 2 [@42Ek+D  (k+DE) 1 Qkilla
N 2k + 2 2 2 (2k + 2)?

1=k+1

Vv

1 _ 1
g”ﬁco - $2k+1”% = g”wo - 90*“%-
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