4.4.2 The Newton Method

Example 4.19 Let us apply the Newton method to find the root of the following function

$$
g(x)=\frac{x}{\sqrt{1+x^{2}}} .
$$

Clearly $x^{*}=0$.
The Newton method will give:

$$
x_{k+1}=x_{k}-\frac{g\left(x_{k}\right)}{g^{\prime}\left(x_{k}\right)}=x_{k}-x_{k}\left(1+x_{k}^{2}\right)=-x_{k}^{3} .
$$

Therefore, the method converges if $\left|x_{0}\right|<1$, it oscillates if $\left|x_{0}\right|=1$, and finally, diverges if $\left|x_{0}\right|>1$.

Assumption 4.20

1. $f \in \mathcal{C}_{M}^{2,2}\left(\mathbb{R}^{n}\right)$;
2. There is a local minimum \boldsymbol{x}^{*} of the function $f(\boldsymbol{x})$;
3. The Hessian is positive definite at \boldsymbol{x}^{*} :

$$
\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right) \succeq \ell \boldsymbol{I}, \quad \ell>0 ;
$$

4. Our starting point \boldsymbol{x}_{0} is close enough to \boldsymbol{x}^{*}.

Theorem 4.21 Let the function $f(\boldsymbol{x})$ satisfy the above assumptions. Suppose that the initial starting point \boldsymbol{x}_{0} is close enough to \boldsymbol{x}^{*} :

$$
\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}<\bar{r}:=\frac{2 \ell}{3 M} .
$$

Then $\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}<\bar{r}$ for all k of the Newton method and it converges (Q-)quadratically:

$$
\left\|\boldsymbol{x}_{k+1}-\boldsymbol{x}^{*}\right\|_{2} \leq \frac{M\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}^{2}}{2\left(\ell-M\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}\right)} .
$$

Proof:
Let $r_{k}=\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|_{2}$. From Lemma 3.8 and the assumption, we have for $k=0$,

$$
\begin{equation*}
\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right) \succeq \boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}\right)-M r_{0} \boldsymbol{I} \succeq\left(\ell-M r_{0}\right) \boldsymbol{I} . \tag{8}
\end{equation*}
$$

Since $r_{0}<\bar{r}=\frac{2 \ell}{3 M}<\frac{\ell}{M}$, we have $\ell-M r_{0}>0$ and therefore, $\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)$ is invertible.
Consider the Newton method for $k=0, \boldsymbol{x}_{1}=\boldsymbol{x}_{0}-\left[\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right]^{-1} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)$.
Then

$$
\begin{aligned}
\boldsymbol{x}_{1}-\boldsymbol{x}^{*} & =\boldsymbol{x}_{0}-\boldsymbol{x}^{*}-\left[\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right]^{-1} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right) \\
& =\boldsymbol{x}_{0}-\boldsymbol{x}^{*}-\left[\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right]^{-1} \int_{0}^{1} \boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}+\tau\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right)\right)\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right) d \tau \\
& =\left[\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right]^{-1} \boldsymbol{G}_{0}\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right)
\end{aligned}
$$

where $\boldsymbol{G}_{0}=\int_{0}^{1}\left[\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)-\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}+\tau\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right)\right)\right] d \tau$.

Then

$$
\begin{aligned}
\left\|\boldsymbol{G}_{0}\right\|_{2} & =\left\|\int_{0}^{1}\left[\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)-\nabla^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}+\tau\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right)\right)\right] d \tau\right\|_{2} \\
& \leq \int_{0}^{1}\left\|\nabla^{2} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)-\nabla^{2} \boldsymbol{f}\left(\boldsymbol{x}^{*}+\tau\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right)\right)\right\|_{2} d \tau \\
& \leq \int_{0}^{1} M|1-\tau| r_{0} d \tau=\frac{r_{0}}{2} M
\end{aligned}
$$

From (8),

$$
\left\|\left[\boldsymbol{\nabla}^{2} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right]^{-1}\right\|_{2} \leq\left(\ell-M r_{0}\right)^{-1}
$$

Then

$$
r_{1} \leq \frac{M r_{0}^{2}}{2\left(\ell-M r_{0}\right)}
$$

Since $r_{0}<\bar{r}=\frac{2 \ell}{3 M}, \quad \frac{M r_{0}}{2\left(\ell-M r_{0}\right)}<1$, and $r_{1}<r_{0}$.
One can see now that the same argument is valid for all k 's.

- Comparing this result with the rate of convergence of the steepest descent, we see that the Newton method is much faster.
- Surprisingly, the region of quadratic convergence of the Newton method is almost the same as the region of the linear convergence of the gradient method.

$$
\left\|x_{0}-x^{*}\right\|_{2}<\frac{2 \ell}{M} \quad(\text { steepest descent method }) \quad\left\|x_{0}-x^{*}\right\|_{2}<\frac{2 \ell}{3 M} \quad \text { (Newton method) }
$$

- This justifies a standard recommendation to use the steepest descent method only at the initial stage of the minimization process in order to get close to a local minimum and then perform the Newton method to refine.

4.4.3 The Conjugate Gradient Methods

The conjugate gradient methods were initially proposed for minimizing convex quadratic functions. Consider the problem

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x})
$$

with $f(\boldsymbol{x})=\alpha+\langle\boldsymbol{a}, \boldsymbol{x}\rangle+\frac{1}{2}\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle$ and $\boldsymbol{A} \succ \boldsymbol{O}$. Since its minimal solution is $\boldsymbol{x}^{*}=-\boldsymbol{A}^{-1} \boldsymbol{a}$, we can rewrite $f(\boldsymbol{x})$ as:

$$
\begin{aligned}
f(\boldsymbol{x}) & =\alpha-\left\langle\boldsymbol{A} \boldsymbol{x}^{*}, \boldsymbol{x}\right\rangle+\frac{1}{2}\langle\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}\rangle \\
& =\alpha-\frac{1}{2}\left\langle\boldsymbol{A} \boldsymbol{x}^{*}, \boldsymbol{x}^{*}\right\rangle+\frac{1}{2}\left\langle\boldsymbol{A}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right), \boldsymbol{x}-\boldsymbol{x}^{*}\right\rangle
\end{aligned}
$$

Thus, $f\left(\boldsymbol{x}^{*}\right)=\alpha-\frac{1}{2}\left\langle\boldsymbol{A} \boldsymbol{x}^{*}, \boldsymbol{x}^{*}\right\rangle$ and $\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{A}\left(\boldsymbol{x}-\boldsymbol{x}^{*}\right)$.
Definition 4.22 Given a starting point \boldsymbol{x}_{0}, the linear Krylov subspaces is defined as

$$
\mathcal{L}_{k}:=\operatorname{span}\left\{\boldsymbol{A}\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right), \ldots, \boldsymbol{A}^{k}\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right)\right\}, \quad k \geq 1
$$

where $\operatorname{span}\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{p}\right\}$ is the linear subspace of \mathbb{R}^{n} spanned by the vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{p} \in \mathbb{R}^{n}$.

We claim temporarily that the sequence of points generated by a conjugate gradient method is defined as follows:

$$
\boldsymbol{x}_{k}:=\arg \min \left\{f(\boldsymbol{x}) \mid \boldsymbol{x} \in \boldsymbol{x}_{0}+\mathcal{L}_{k}\right\}, k \geq 1
$$

Lemma 4.23 For any $k \geq 1, \mathcal{L}_{k}=\operatorname{span}\left\{\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right), \ldots, \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k-1}\right)\right\}$.
Proof:
Let us prove by induction hypothesis.
For $k=1$, the statement is true since $\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)=\boldsymbol{A}\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right)$.
Suppose the claim is true for some $k \geq 1$. Then from the definition of the conjugate gradient method,

$$
\boldsymbol{x}_{k}=\boldsymbol{x}_{0}+\sum_{i=1}^{k} \lambda_{i} \boldsymbol{A}^{i}\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right)
$$

with some $\lambda_{i} \in \mathbb{R}, \quad i=1, \ldots, k$. Therefore,

$$
\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)=\boldsymbol{A}\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right)+\sum_{i=1}^{k} \lambda_{i} \boldsymbol{A}^{i+1}\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right)=\boldsymbol{A}\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right)+\sum_{i=1}^{k-1} \lambda_{i} \boldsymbol{A}^{i+1}\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right)+\lambda_{k} \boldsymbol{A}^{k+1}\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right) .
$$

The first two terms of the last expression belongs to \mathcal{L}_{k} from the definition. And then,

$$
\operatorname{span}\left\{\mathcal{L}_{k}, \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\} \subseteq \operatorname{span}\left\{\mathcal{L}_{k}, \boldsymbol{A}^{k+1}\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right)\right\}=\mathcal{L}_{k+1} .
$$

There are two ways to show that the equality holds. Assume that $\boldsymbol{A}^{k+1}\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right) \in \mathcal{L}_{k}$. Then it is obvious and $\mathcal{L}_{k}=\mathcal{L}_{k+1}$. If $\boldsymbol{A}^{k+1}\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right) \notin \mathcal{L}_{k}$, the equality holds unless $\lambda_{k}=0$. However, this possibility implies that $\boldsymbol{x}_{k} \in \mathcal{L}_{k-1}, \boldsymbol{x}_{k-1}=\boldsymbol{x}_{k}$ and therefore, $\mathcal{L}_{k-1}=\mathcal{L}_{k}=\mathcal{L}_{k+1}$ again.

An alternative way is to use contradiction. If the equality does not hold, $\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right) \in \mathcal{L}_{k}$ implies $\boldsymbol{A}^{k+1}\left(\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right) \in \mathcal{L}_{k}$, which again implies the equality, or $\lambda_{k}=0$, which implies that $\boldsymbol{x}_{k}=\boldsymbol{x}_{k-1}$ (algorithm terminated).

Lemma 4.24 For any $k, \ell \geq 0, k \neq \ell$, we have $\left\langle\nabla \boldsymbol{f}\left(\boldsymbol{x}_{k}\right), \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{\ell}\right)\right\rangle=0$.
Proof:
Let $k \geq i$, and consider

$$
\phi(\boldsymbol{\lambda})=f\left(\boldsymbol{x}_{0}+\sum_{j=1}^{k} \lambda_{j} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{j-1}\right)\right) .
$$

From the previous lemma, there is a $\boldsymbol{\lambda}^{*}$ such that $\boldsymbol{x}_{k}=\boldsymbol{x}_{0}+\sum_{j=1}^{k} \lambda_{j}^{*} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{j-1}\right)$. Moreover, $\boldsymbol{\lambda}^{*}$ is the minimum of the function $\phi(\boldsymbol{\lambda})$. Therefore,

$$
\frac{\partial \phi}{\partial \lambda_{i}}\left(\boldsymbol{\lambda}^{*}\right)=\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right), \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{i-1}\right)\right\rangle=0 .
$$

Corollary 4.25 The sequence generated by the conjugate gradient method for the convex quadratic function is finite.

Proof:
Since the number of orthogonal directions in \mathbb{R}^{n} cannot exceed n.
Let us define $\boldsymbol{\delta}_{i}=\boldsymbol{x}_{i+1}-\boldsymbol{x}_{i}$. It is clear that $\mathcal{L}_{k}=\operatorname{span}\left\{\boldsymbol{\delta}_{0}, \boldsymbol{\delta}_{1}, \ldots, \boldsymbol{\delta}_{k-1}\right\}$ (Exercise 10).
Lemma 4.26 For any $k, \ell \geq 0, k \neq \ell,\left\langle\boldsymbol{A} \boldsymbol{\delta}_{k}, \boldsymbol{\delta}_{\ell}\right\rangle=0$.

Proof:

Left for exercise.

The vectors $\left\{\boldsymbol{\delta}_{i}\right\}$ are called conjugate with respect to matrix \boldsymbol{A}.
Now, let us be more precise with the conjugate gradient method. We will define the next iterations as follows:

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-h_{k} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)+\sum_{j=0}^{k-1} \lambda_{j} \boldsymbol{\delta}_{j}
$$

Using the previous properties, we arrive that (see Exercise 11)

$$
\begin{equation*}
\lambda_{j}=0, \quad(j=0,1, \ldots, k-2), \quad \lambda_{k-1}=\frac{h_{k}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2}}{\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k-1}\right), \boldsymbol{\delta}_{k-1}\right\rangle} . \tag{9}
\end{equation*}
$$

Thus

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-h_{k} \boldsymbol{p}_{k}
$$

where

$$
\boldsymbol{p}_{k}=\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)-\frac{\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2} \boldsymbol{p}_{k-1}}{\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k-1}\right), \boldsymbol{p}_{k-1}\right\rangle} .
$$

Finally, we can present the Conjugate Gradient Method

Conjugate Gradient Method		
Step 0:	Let $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$, compute $f\left(\boldsymbol{x}_{0}\right), \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)$ and set $\boldsymbol{p}_{0}:=\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{0}\right), k:=0$	
Step 1:	Find $\boldsymbol{x}_{k+1}:=\boldsymbol{x}_{k}-h_{k} \boldsymbol{p}_{k}$ by "approximate line search" on the scalar h_{k}	
Step 2:	Compute $f\left(\boldsymbol{x}_{k+1}\right)$ and $\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k+1}\right)$	
Step 3:	Compute the coefficient β_{k+1}	
Step 4:	Set $p_{k+1}:=\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k+1}\right)-\beta_{k+1} \boldsymbol{p}_{k}, k:=k+1$ and go to Step 1	

The most popular choices for the coefficient β_{k} are:

1. Hestenes-Stiefel (1952): $\quad \beta_{k+1}=\frac{\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k+1}\right), \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k+1}\right)-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\rangle}{\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k+1}\right)-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right), \boldsymbol{p}_{k}\right\rangle}$.
2. Fletcher-Reeves (1964): $\quad \beta_{k+1}=\frac{\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k+1}\right)\right\|_{2}^{2}}{\left\|\boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2}}$.
3. Polak-Ribière (1969): $\quad \beta_{k+1}=\frac{\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k+1}\right), \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k+1}\right)-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\rangle}{\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\|_{2}^{2}}$.
4. Polak-Ribière plus: $\quad \beta_{k+1}=\max \left\{0, \frac{\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k+1}\right), \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k+1}\right)-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)\right\rangle}{\| \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k} \|_{2}^{2}\right.}\right\}$.
5. Dai-Yuan (1999): $\beta_{k+1}=\frac{\left\|\boldsymbol{\nabla} f\left(\boldsymbol{x}_{k+1}\right)\right\|_{2}^{2}}{\left\langle\boldsymbol{\nabla}\left(\boldsymbol{x}_{k+1}\right)-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right), \boldsymbol{p}_{k}\right\rangle}$.

Among them, Hestenes-Stiefel and Polak-Ribière are empirically preferred.

