
1

2018
Practical Parallel Computing
(実践的並列コンピューティング)

No. 14

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

GPU Programming (4)

Considering Performance of
GPU Programs

2

CPU GPU

 It is best to reduce of amount of computation & transfer!
 Other approaches are …

Transfer

Reduce computation time on GPU
• Tuning number of threads
• Reduce non-coalesced access
• Reduce divergent branches

:

Reduce/Hide transfer time
• Asynchronous transfer with

cudaStream

Computation

Official Documents

3

CUDA
https://docs.nvidia.com/cuda/
OpenACC
https://www.openacc.org/resources

Tuning Number of Threads

 When creating 1,000,000 threads,
 <<<1, 1000000>>> causes an error

 blockDim must be <= 1024
 <<<1000000, 1>>> can work, but slowWhy?

4

func<<<dim3(gx, gy, gz), dim3(bx, by, bz)>>> (...);

gridDim blockDim

(gx*gy*gz) * (bx*by*bz) threads are created

Specifying number of threads in CUDA

※ For OpenACC, num_gangs gridDim, vector_length blockDim

Why Do We Have to Specify both
gridDim and blockDim?

5

 and why did NVIDIA decide so?
 Hierarchical structure of GPU processor is considered

1 GPU = 56 SMX
1 SMX = 64 CUDA core

Structure of P100 GPU
(16nm, 15Billion transistors)

610mm2

Mapping between Threads and
Cores

6

 M (≧1) thread blocks run on 1 SMX
 At least 56 blocks are needed to use all SMXs on P100
 gridDim (gx*gy*gz) should be ≧56

 N (≧1) thread run on a CUDA core
 At least 56*64=3584 threads in total are needed to use all CUDA

cores on K20X
 Total threads (gx*gy*gz * bx*by*bz) should be ≧3584

 32 consective threads (in a block) are batched (called a
warp) and scheduled
 At least 32 threads per block are needed for performance
 blockDim (bx*by*bz) should be ≧32

Warp: Internal Execution Unit

Threads in a thread block are internally divided into “warp”, a group of
contiguous 32 threads
32 threads in a warp always are executed synchronously

They execute the same instruction simultaneously
There is only one program counter for 32 threads! Structure of a GPU core
is simplified

7

thread < warp < thread block < grid

ThreadIdx.x 0 1 31 32 33 63

Time

Observations due to Warps
 If number of threads per block (blockDim) is not 32 x n, it

is inefficient
 Even if blockDim=1, the system creates a warp for it

 Characteristics in memory addresses accessed by
threads in a warp affect the performance
 Coalesced accesses are fast

 Characteristics in branch (such as “if”) affect the
performance
 Divergent branches are slow

8

※ In multi-dimensional cases (blockDim.y>1 or
blockDim.z>1), “neighborhood” is defined by x-
dimension

Coalesced Access
 When threads in a warp access “neighbor” address

on memory (coalesced access), it is more efficient

Coalesced access
 Faster

Non-coalesced access
 Slower

Accesses in mm Samples
 Accesses in mm-cuda, mm-acc are coalesced
 Accesses in mm-slow-cuda,mm-slow-acc are coalesced

10

We should see “what data are accessed by threads in a
warp simultaneously

matrices in column-major format

Fast Slow

Considering Branches in
Parallel Programs

Consider this code. How long is execution time?
if (thread-id % 2 == 0) {

: // (A) 30msec

} else {

: // (B) 20msec

}

11

On CPU (OpenMP)

(A) (A)(B) (B)
30ms

On GPU, threads in a warp
must execute the same instruction.
What happens?

Branches on GPU (1)
:
:

if (thread-id % 2 == 0) {
:
:
:

} else {
:
:
:

}
:
:

Some threads are made sleep
Both “then” and “else” are executed!

 Answer to previous
question is 50ms !

※ Similar cases happen in
for, while…

Branches on GPU (2)
 As exceptional cases, if threads in a warp

“agree” in branch condition, either “then” part or
“else” part is executed Efficient!

 If there is difference of opinion (previous page),
it is called a divergent branch

 Agreement among buddies is important

13

Considering Data Transfer Costs
Example case: We are going to multiple
matrix multiplications.
 Input data are on host memory

 C1 = A1 × B1
 C2 = A2 × B2

….
 Cn = An × Bn

 In default, GPU cannot compute
during transfer

 Hiding transfer costs is a good idea
 cudaStream in CUDA
 async in OpenACC 14

CPU GPU

Comp

Transfer

Comp

Asynchronous Executions with
cudaStream (1)

15

What are streams?
 GPU’s “service counters” that accept tasks from CPU

 Each stream looks like a queue
 “Tasks” from CPU to GPU include

 Data transfer (Host Device)
 GPU kernel function call
 Data transfer (Device Host)

CPU GPU

Ask
something

stream

Sample Program: ~endo-t-ac/ppcomp/18/array-async-cuda/

Asynchronous Executions with
cudaStream (2)

16

cudaMemcpyAsync(dst, src, size, type, str);
Data transfer using a specific stream

Create a stream
cudaStream_t str;
cudaStreamCreate(&str); // Create a stream

func<<<gs, bs, 0, str>>>(…);
// 3rd parameter is related to for “shared memory”

Call GPU kernel function using a stream

Wait until all tasks on a stream are finished
cudaStreamSynchronize(str);

How GPU does Tasks

 Tasks on the same stream is done in FIFO
 If tasks are in different streams, and have different kinds,

they may be done simultaneously
 Kinds: HD, kernel, DH
 Note: If tasks are in the same kind, no speed up

17

CPU GPU
Ask

stream

“Async” Option in OpenACC
 kernels, data, enter data… directives can have

async option
#pragma acc data copy … async(1)
#pragma acc kernels async(2)
Execution (of copy or kernel) is non-blocking

 Waiting the end of non-blocking operations
#pragma acc wait(2)
#pragma acc wait

18

Integer: streamID

Integer: streamID

Sample Program: ~endo-t-ac/ppcomp/18/array-async-cuda/

※ The program is more complex than expected

Speed Up with Overlap of
Computation and Transfer

n streams can be used for n independent
tasks

 C1 = A1 × B1 (includes H->D, Calc, D->H)
 C2 = A2 × B2

….
 Cn = An × Bn

 We will see speed up since
(Total comp time + Total trans time)
is improved to
max(Total comp time, Total trans time)

19

CPU GPU
transfer

This is not a unique solution;
Use 2 or 3 streams repeatedly we can save
memory and stream resources

More Things to Study
 Using CUDA shared memory
 fast and small memory than device memory

 Unified memory in recent CUDA
 cudaMemcpy can be omitted for automatic data

transfer
 Using multiple GPUs towards petascale

computation
 MPI+CUDA!

 More and more…

20

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required
 Also attendances will be considered

21

Part 1
OpenMP

Part 2
MPI

Part 3
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1] diffusion
[M2] mm
[M3] free

[G1] diffusion
[G2] mm
[G3] free

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

22

Assignments in GPU Part
(Abstract)
Choose one of [G1]—[G3], and submit a report
Due date: June 14 (Thursay)

[G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

[G2] Improve “mm-acc” or “mm-cuda” to support larger
matrices

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

23

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file, 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 If you use multiple files, you can use “.zip” or “.tgz”

 Report should include:
Which problem you have chosen
How you parallelized

 It is even better if you mention efforts for high performance or new
functions

Performance evaluation on TSUBAME
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

24

Next Class (Final):
 Invited talk for distributed framework with

GPUs

	2018�Practical Parallel Computing�(実践的並列コンピューティング)�No. 14
	Considering Performance of�GPU Programs
	Official Documents
	Tuning Number of Threads
	Why Do We Have to Specify both gridDim and blockDim?
	Mapping between Threads and Cores
	Warp: Internal Execution Unit
	Observations due to Warps
	Coalesced Access
	Accesses in mm Samples
	Considering Branches in Parallel Programs
	Branches on GPU (1)
	Branches on GPU (2)
	Considering Data Transfer Costs
	Asynchronous Executions with cudaStream (1)
	Asynchronous Executions with cudaStream (2)
	How GPU does Tasks
	“Async” Option in OpenACC
	Speed Up with Overlap of Computation and Transfer
	More Things to Study
	Assignments in this Course
	Assignments in GPU Part�(Abstract)
	Notes in Submission
	Next Class (Final):

