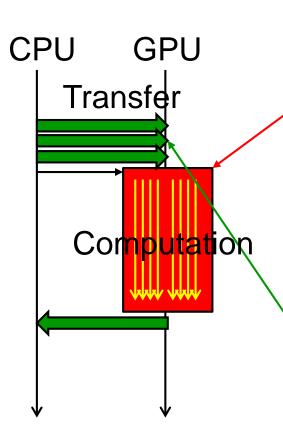


Considering Performance of GPU Programs



- It is best to reduce of amount of computation & transfer!
- Other approaches are ...



Reduce computation time on GPU

- Tuning number of threads
- Reduce <u>non-coalesced access</u>
- Reduce <u>divergent branches</u>

Reduce/Hide transfer time

 Asynchronous transfer with <u>cudaStream</u>

Official Documents

CUDA

https://docs.nvidia.com/cuda/

OpenACC

https://www.openacc.org/resources

Tuning Number of Threads

Specifying number of threads in CUDA gridDim blockDim func<<<dim3(gx, gy, gz), dim3(bx, by, bz)>>> (...);

 \rightarrow (gx*gy*gz) * (bx*by*bz) threads are created

- When creating 1,000,000 threads,
 - <<<1, 1000000>>> causes an error
 - blockDim must be <= 1024
 - <<<100000, 1>>> can work, but slow \rightarrow Why?

※ For OpenACC, num_gangs ⇔ gridDim, vector_length ⇔blockDim ₄

Why Do We Have to Specify both gridDim and blockDim?

- and why did NVIDIA decide so?
- \rightarrow Hierarchical structure of GPU processor is considered

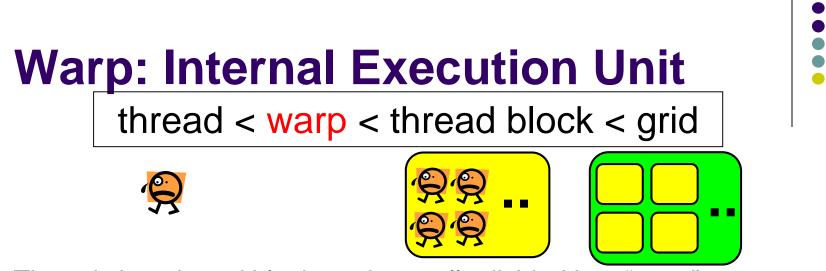
Structure of P100 GPU (16nm, 15Billion transistors)

1 GPU = 56 SMX1 SMX = 64 CUDA core

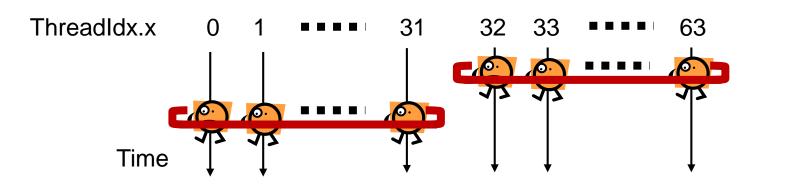


Mapping between Threads and Cores

- → At least 56 blocks are needed to use all SMXs on P100
- → gridDim (gx*gy*gz) should be \geq 56
- N (\geq 1) thread run on a CUDA core
 - → At least 56*64=3584 threads in total are needed to use all CUDA cores on K20X
 - → Total threads (gx*gy*gz * bx*by*bz) should be \geq 3584
- 32 consective threads (in a block) are batched (called a warp) and scheduled
 - → At least 32 threads per block are needed for performance
 - → blockDim (bx*by*bz) should be \geq 32



- •Threads in a thread block are internally divided into "warp", a group of contiguous 32 threads
- •32 threads in a warp always are executed synchronously
 - They execute the same instruction simultaneously
 - There is only one program counter for 32 threads! → Structure of a GPU core is simplified



Observations due to Warps

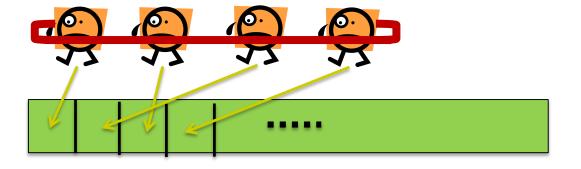
- If number of threads per block (blockDim) is not 32 x n, it is inefficient
 - Even if blockDim=1, the system creates a warp for it
- Characteristics in memory addresses accessed by threads in a warp affect the performance
 - Coalesced accesses are fast
- Characteristics in branch (such as "if") affect the performance
 - Divergent branches are slow

X In multi-dimensional cases (blockDim.y>1 or blockDim.z>1), "neighborhood" is defined by x-dimension

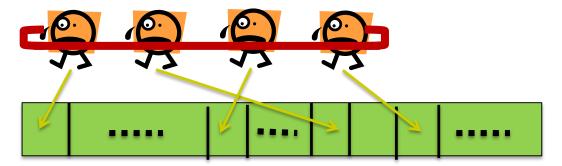
Coalesced Access

• When threads in a warp access "neighbor" address on memory (coalesced access), it is more efficient

Coalesced access → Faster



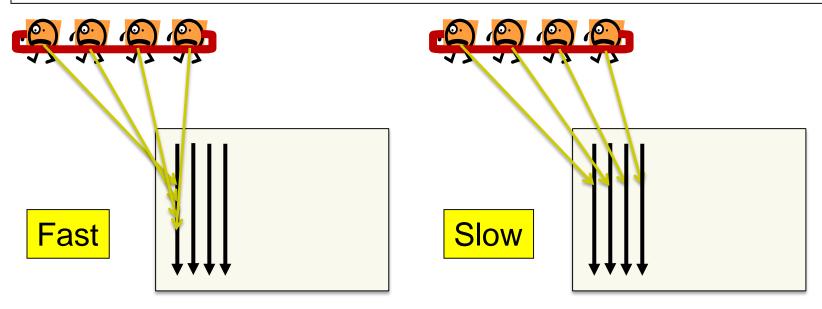
Non-coalesced access → Slower



Accesses in mm Samples

- Accesses in mm-cuda, mm-acc are coalesced
- Accesses in mm-slow-cuda,mm-slow-acc are coalesced

We should see "what data are accessed by threads in a warp simultaneously



matrices in column-major format

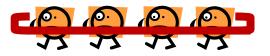
Considering Branches in Parallel Programs

Consider this code. How long is execution time?

```
if (thread-id % 2 == 0) {
    : // (A) 30msec
} else {
    : // (B) 20msec
}
```

On CPU (OpenMP) (A) (B) (A) (B) 30ms

On GPU, threads in a warp must execute the same instruction. What happens?



Branches on GPU (1)

if (thread-id % 2 == 0) {

} else {

Some threads are made sleep Both "then" and "else" are executed!

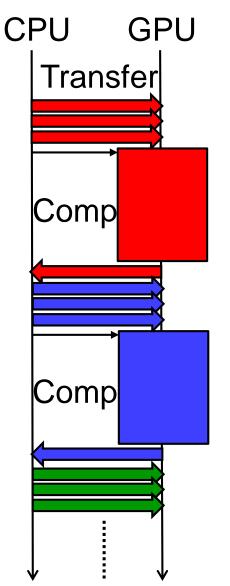
→ Answer to previous question is 50ms !

X Similar cases happen in for, while...

Branches on GPU (2)

- As exceptional cases, if threads in a warp "agree" in branch condition, either "then" part or "else" part is executed → Efficient!
- If there is difference of opinion (previous page), it is called a divergent branch
- → Agreement among buddies is important

Considering Data Transfer Costs



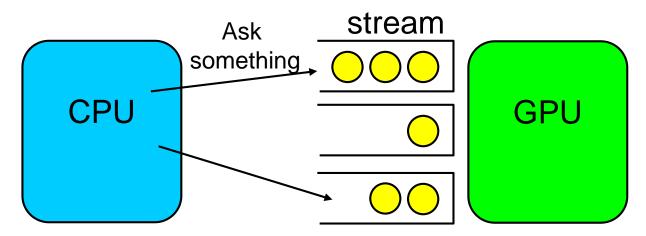
Example case: We are going to multiple matrix multiplications.

- Input data are on host memory
 - C1 = A1 × B1
 - $C2 = A2 \times B2$
 - Cn = An × Bn
- In default, GPU cannot compute during transfer
- → Hiding transfer costs is a good idea
 - cudaStream in CUDA
 - async in OpenACC

Asynchronous Executions with cudaStream (1)

What are streams?

- GPU's "service counters" that accept tasks from CPU
 - Each stream looks like a queue
- "Tasks" from CPU to GPU include
 - Data transfer (Host \rightarrow Device)
 - GPU kernel function call
 - Data transfer (Device \rightarrow Host)



Sample Program: ~endo-t-ac/ppcomp/18/array-async-cuda/

Asynchronous Executions with cudaStream (2)

Create a stream

cudaStream_t str;

cudaStreamCreate(&str); // Create a stream

Data transfer using a specific stream

cudaMemcpyAsync(dst, src, size, type, str);

Call GPU kernel function using a stream

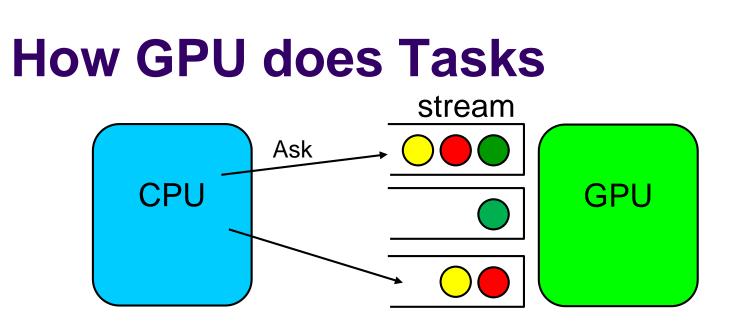
func<<<gs, bs, 0, str>>>(...);

// 3rd parameter is related to for "shared memory"

Wait until all tasks on a stream are finished

cudaStreamSynchronize(str);

16



- Tasks on the same stream is done in FIFO
- If tasks are in different streams, and have different kinds, they may be done simultaneously
 - Kinds: $H \rightarrow D$, kernel, $D \rightarrow H$
 - Note: If tasks are in the same kind, no speed up

"Async" Option in OpenACC

 kernels, data, enter data... directives can have async option

#pragma acc data copy ... async(1)
#pragma acc kernels async(2)
Integer: streamID

→ Execution (of copy or kernel) is non-blocking

 Waiting the end of non-blocking operations #pragma acc wait(2)
 Integer: streamID #pragma acc wait

Sample Program: ~endo-t-ac/ppcomp/18/array-async-cuda/

Speed Up with Overlap of Computation and Transfer

n streams can be used for n independent tasks

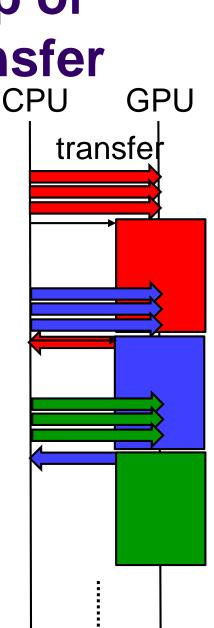
- C1 = A1 × B1 (includes H->D, Calc, D->H)
- C2 = A2 × B2
- $Cn = An \times Bn$
- → We will see speed up since

(Total comp time + Total trans time)

is improved to

max(Total comp time, Total trans time)

This is not a unique solution; Use 2 or 3 streams repeatedly \rightarrow we can save memory and stream resources

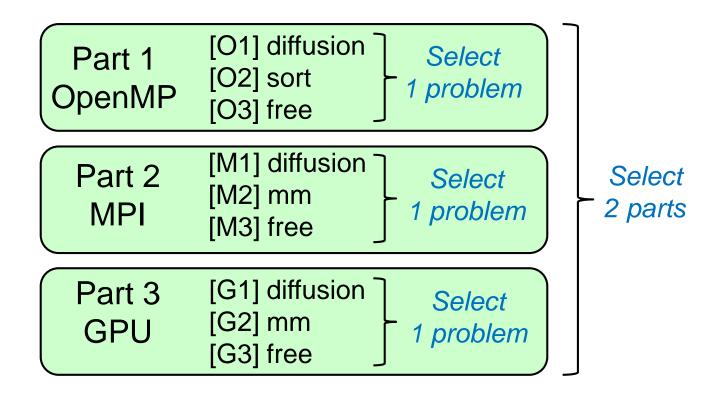


More Things to Study

- Using CUDA shared memory
 - fast and small memory than device memory
- Unified memory in recent CUDA
 - cudaMemcpy can be omitted for automatic data transfer
- Using multiple GPUs towards petascale computation
 - MPI+CUDA!
- More and more...

Assignments in this Course

- There is homework for each part. Submissions of reports for 2 parts are required
- Also attendances will be considered



Assignments in GPU Part (Abstract)

Choose <u>one of [G1]</u>—[G3], and submit a report Due date: June 14 (Thursay)

[G1] Parallelize "diffusion" sample program by OpenACC or CUDA

[G2] Improve "mm-acc" or "mm-cuda" to support larger matrices

[G3] (Freestyle) Parallelize *any* program by OpenACC or CUDA.

Notes in Submission

- Submit the followings via OCW-i
 - (1) A report document
 - A PDF or MS-Word file, 2 pages or more
 - in English or Japanese (日本語もok)
 - (2) Source code files of your program
 - If you use multiple files, you can use ".zip" or ".tgz"
- Report should include:
 - Which problem you have chosen
 - How you parallelized
 - It is even better if you mention efforts for high performance or new functions
 - Performance evaluation on TSUBAME
 - With varying number of processor cores
 - With varying problem sizes
 - Discussion with your findings
 - Other machines than TSUBAME are ok, if available

Next Class (Final):

 Invited talk for distributed framework with GPUs