
1

2018
Practical Parallel Computing
(実践的並列コンピューティング)

No. 12

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

GPU Programming (2)

CUDA and OpenACC for GPUs
 OpenACC

 C/Fortran + directives (#pragma acc …), Easier programming
 PGI compiler works

 module load pgi
 pgcc –acc … XXX.c

 Basically for data parallel programs with for-loops
 Less freedom in algorithms

 CUDA
 Most popular and suitable for higher performance
 Use “nvcc” command for compile

 module load cuda
 nvcc … XXX.cu

Programming is harder, but more general
2

Data Region and Kernel
Region in OpenACC

 Data region may contain 1 or more kernel regions
 Data movement occurs at beginning and end of data region 3

int main()
{

A;
#pragma acc data copy(x,y)

{
#pragma acc kernels

{
B;

}
C;

#pragma acc kernels
D;

}
E;

}

A

B

C

D

E

CPU GPU
Copy x,y

CPU GPU

Copy x,y
CPU GPU

Data
Region

Kernel
regions

“diffusion” Sample Program (1)
(Revisited, related to [G1])

 Density of ink in each point vary according to
time Simulated by computers

An example of diffusion phenomena:
• Pour a drop of ink into a water glass

© 青木尊之

The ink spreads gradually, and finally the density
becomes uniform (Figure by Prof. T. Aoki)

Double Buffering Technique
(Revisited)
 It is sufficient to have “current” array and “previous” array.

“Double buffers” are used for many times

An Array for
“even” steps

An Array for
“odd” steps

Compute t=0→t=1

Compute t=1→t=2

Compute t=2→t=3

※ Sample program uses a global variables
float data[2][NY][NX];

Parallelizing Diffusion with
OpenACC
 x, y loops are parallelized

6

[Data transfer from CPU to GPU]

for (t = 0; t < nt; t++) {

for (y = 1; y < NY-1; y++) {

for (x = 1; x < NX-1; x++) {

:
}

}

}

[Data transfer from GPU to CPU]

Parallelized on GPU

It’s better to transfer
data out of t-loop

Unstructured Data Copy
 With “data” directive, copy timing is restricted
We can copy anytime by “enter”, ”exit” directives

7

:

#pragma acc data copy(x,y)
{

:
}

:

:

#pragma enter data copyin(x,y)

:

#pragma exit data copyout(x,y)

:

 ~endo-t-ac/ppcomp/18/mm-meas-acc sample uses them
for time measurement

Data Transfer in mm-acc
sample

 Host memory on CPU and device
memory on GPU are different data
transfer is needed

 Current design
 After initialization of A, B, C, we transfer

them from CPU to GPU
 Amount of data transfer: O(mk+kn+mn)
 Computation: O(mnk)
 After computation, we transfer C to CPU
 Amount of data transfer: O(mn)

8

CPU GPU

Computation

Transfer
A, B, C

Transfer
C

Initialization

data Clause for Multi-
Dimensional arrays
float A[2000][1000]; 2-dim array

…. data copyin(A[0:2000][0:1000])
 OK, all elements of A are copied

…. data copyin(A[500:600][0:1000])
 OK, rows[500,1100) are copied

…. data copyin(A[0:2000][300:400])
 NG in current OpenACC

9

※ Currently, OpenACC does not support non-consecutive transfer

Supporting Larger Data
(Related to [G2])
 Device (GPU) memory is smaller. How can we use larger data?
 to split data
~endo-t-ac/ppcomp/18/array-acc sample
./array [m] [n], such as ./array 1000000 100
 Create m*n length array A, and do A[i] *= 2

10

Host memory Device memory

j=0 j=1 j=2 j=3A

Ap
m

m*n
Ap

(1) memcpy

(2) enter data copyin

 Direct copy partial A causes runtime errors Under investigation
Note that Ap[i] A[i + m*j]

Larger Matrix Multiply
(Concept)

 In this case, n is large B, C are large
 Such as ./mm 2000 60000 2000
 Do we need to transfer A each step?

 How can we support large A?
 How do we divide matrices?
 How do we change data transfer algorithm? 11

A

B

C

Host memory Device memory

Bp

Cp A

Bp

Cp
m

k

n

Function Calls from Kernel
Region
 Kernel region can call functions, but attention

12

int main()
{

#pragma acc kernels
{

… func(A[i]) …

}

}

#pragma acc routine
int func(int arg)
{

:
:
return …;

}

 “routine” directive is required by compiler to generate GPU code

How about Library Functions?
 Calling library functions is very limited
 Exceptionally, some mathematical functions a re ok

 fabs, sqrt, fmax…
 #include <math.h> is needed

 We cannot use printf, strlen…
 If we want to see variables (for debug), we need to copy to CPU

13

Reduction in loop Directive
 “OpenMP-like” reduction is ok

14

#pragma acc data …
#pragma acc kernels …

#pragma acc loop independent reduction(+:sum)
for (i = 0; i < n; i++) {

A[i] = … + B[i] + …;
…
sum += … ;

}
We should avoid race condition

operator

※ “operator” may be +, *, max, min, &, |

Specify Hardware Mapping in
loop Directive

cf)
#pragma acc loop independent gang,worker
for (i= 0….)
#pragma acc loop independent vector

for (j=0….)
15

gang

worker vector

※ Usually, default mapping
is good

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required
 Also attendances will be considered

16

Part 1
OpenMP

Part 2
MPI

Part 3
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1] diffusion
[M2] mm
[M3] free

[G1] diffusion
[G2] mm
[G3] free

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

17

Assignments in GPU Part
(Abstract)
Choose one of [G1]—[G3], and submit a report
Due date: June 14 (Thursay)

[G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

[G2] Improve “mm-acc” or “mm-cuda” to support larger
matrices

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

18

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file, 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 If you use multiple files, you can use “.zip” or “.tgz”

 Report should include:
 Which problem you have chosen
 How you parallelized

 It is even better if you mention efforts for high performance or new
functions

 Performance evaluation on TSUBAME
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

19

Next Class:
 GPU Programming (3)
 Introduction to CUDA

	2018�Practical Parallel Computing�(実践的並列コンピューティング)�No. 12
	CUDA and OpenACC for GPUs
	Data Region and Kernel Region in OpenACC
	“diffusion” Sample Program (1) �(Revisited, related to [G1])
	Double Buffering Technique�(Revisited)
	Parallelizing Diffusion with OpenACC
	Unstructured Data Copy
	Data Transfer in mm-acc sample
	data Clause for Multi-Dimensional arrays
	Supporting Larger Data�(Related to [G2])
	Larger Matrix Multiply (Concept)
	Function Calls from Kernel Region
	How about Library Functions?
	Reduction in loop Directive
	Specify Hardware Mapping in loop Directive
	Assignments in this Course
	Assignments in GPU Part�(Abstract)
	Notes in Submission
	Next Class:

