
1

2018
Practical Parallel Computing
(実践的並列コンピューティング)

No. 8

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Distributed Memory Parallel
Programming with MPI (2)

2

Notes on MPI_Recv:
Message Matching (1)

MPI_Recv(b, 16, MPI_INT, 2, 200, MPI_COMM_WORLD, &stat);

0

1

source:1
tag:100

…data…

source:2
tag:200

…data…

I only want a message with tag 200 from 2 !

• Receiver specifies “source” and “tag” that it wants to receive
• Generally, several messages may arrive indefinite order
 The message that matches the condition is delivered
• Other messages should be received by other MPI_Recv calls

Notes on MPI_Recv:
Message Matching (2)

 In some algorithms, the sender may not be known beforehand
 cf) client-server model

 For such cases, MPI_ANY_SOURCE / MPI_ANY_TAG can be used

3

MPI_Status stat;

MPI_Recv(b, 16, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &stat);

0

1

source:1
tag:100

…data…

source:2
tag:200

…data…

Everyone is
welcome!

After receipt, receiver can
see stat.MPI_SOURCE and
stat.MPI_TAG

Notes on MPI_Recv:
What If Message Size is Unmatched

MPI_Recv(b, 16, MPI_INT, 0, 100, MPI_COMM_WORLD, &stat);

4

0 1

If message is larger than
expected, it’s an error
(the program aborts)

0 1

If message is smaller than
expected, it’s ok
Receiver can know the

actual size by
MPI_Get_Count(&stat, MPI_INT, &s);

It is a good idea for receiver to prepare enough memory

OK

NG

“diffusion” Sample Program (1)
(Revisited)

 Density of ink in each point vary according to
time Simulated by computers

An example of diffusion phenomena:
• Pour a drop of ink into a water glass

© 青木尊之

The ink spreads gradually, and finally the density
becomes uniform (Figure by Prof. T. Aoki)

6

“diffusion” Sample Program (2)
(Revisited)

 Execution：./diffusion [nt]
 nt: Number of time steps
 nx, ny: Space grid size

 nx=8192, ny=8192 (Fixed. See the code)
 How can we make them variables? (See mm sample)

 Compute Complexity：O(nx×ny×nt)

Available at ~endo-t-ac/ppcomp/18/diffusion/

Data Structures in diffusion
(Revisited)
 Space to be simulated are divided into grids, and

expressed by arrays (2D in this sample)
NX

NY

Time step t=0 t=1 t=20

• Array elements are computed via timestep, by using
“previous” data

Double Buffering Technique
(Revisited)
 A simple way is to make arrays for all time steps, but it

consumes too much memory!
 It is sufficient to have “current” array and “previous” array.

“Double buffers” are used for many times
An Array for
“even” steps

An Array for
“odd” steps

Compute t=0→t=1

Compute t=1→t=2

Compute t=2→t=3

※ Sample program uses a global variables
float data[2][NY][NX];

9

Data Structure in Original
“diffusion”

An Array for “even” steps An Array for “odd” steps

NX

NY

10

How Do We Parallelize
“diffusion” Sample?
Parallelization method with OpenMP：
[Algorithm] Parallelize spatial (Y or X) for-loop

 Each thread computes its part in the space
 Time (T) loop cannot be parallelized, due to dependency

[Data] Data structure is same as sequential version

With MPI:
[Algorithm] Same policy as OpenMP version

 Each process computes its part in the space
[Data] Arrays are divided among processes

 Each process has its own part of arrays

11

Considering Data Distribution (1)

 A color = a process

An Array for “even” steps An Array for “odd” steps

Considering Data Distribution (2)
 A simple distribution is like:

12

Computation requires data in other processes
Communication is required
So, where should received data be put?

13

Introducing “Halo” Region
 It is a good idea to make additional rows to arrays
 called “Halo” region or “sleeve” region

Halo

Halo

Each time step consists of:
(1) Communication: Recv data and store into “halo” region

 Also neighbor processes need “my” data
(2) Computation: Old data at time t (including “halo”)
 New data at time t+1

(1)Comm

(1)Comm

(2)
Comp

The name of “Halo” Region

14

The Sun

Halo
Sleeves

en.wiktionary.org

15

Overview of MPI “diffusion”
(Still Unsafe)

for (t = 0; t < nt; t++) {

Send B to rank-1, Send D to rank+1

Recv A from rank-1, Recv E from rank+1

Computes points in rows B—D

Switch old and new arrays

} This version is still unsafe, because
this may cause deadlock

A
B
C
D
E

(1) Communication

(2) Computation

A Sample for Safe Neighbor
Communication
Available at ~endo-t-ac/ppcomp/18/neicomm/
Execution: mpirun –np [np] ./neicomm

(1) Each process produces a single value (rank2 here)
(2) Each process receives values from its neighbors

(rank-1 and rank+1)

16

Rank 0 Rank 1 Rank 2 Rank 3

0 1 4 9491401

Neighbor Communication

Send to rank-1

Send to rank+1

Recv from rank-1

Recv from rank-1

17

Start to send to rank-1

Start to send to rank+1

Recv from rank-1

Recv from rank-1

Finish to send to rank-1

Finish to send to rank+1

Unsafe version  Safe version 

※ It requires a long story to see the reason of deadlock,
so omitted here
Hint: Not only MPI_Recv, but MPI_Send is “blocking”
communication if message size is very large

neicomm_safe()
in neicomm sample

neicomm_unsafe()
in neicomm sample

Non-Blocking Communication

 Non-blocking communication: starts a
communication (send or receive), but does
not wait for its completion
 MPI_Recv is blocking communication, since it

waits for message arrival
 Program must wait for its completion later

18

MPI_Status stat;

MPI_Recv(buf, n, type, src, tag, comm, &stat);

MPI_Status stat;

MPI_Request req;

MPI_Irecv(buf, n, type, src, tag, comm, &req);←start recv

: (Do domething)

MPI_Wait(&req, &stat); ←wait for completion

MPI_Irecv: starts receiving, but it returns Immediately
MPI_Wait: wait for message arrival
MPI_Request looks like a “ticket” for the communication 19

Non-Blocking Receive

Behavior of MPI_Irecv
 MPI_Irecv itself immediately returns
 Program can use received data after MPI_Wait
※ MPI_Recv = MPI_Irecv + MPI_Wait

20

rank 0 rank 1

Send

Irecv

Wait wait for message arrival

immediately returns

Process can do something
message

21

Non-Blocking Send

MPI_Send(buf, n, type, dest, tag, comm);

MPI_Status stat;

MPI_Request req;

MPI_Isend(buf, n, type, dest, tag, comm, &req); ←start send

: (Do domething)

MPI_Wait(&req, &stat); ←wait for completion

MPI_Isend: starts sending, but it returns Immediately
MPI_Wait must be used later
※ MPI_Send = MPI_Isend + MPI_Wait

MPI_Wait Family
 MPI_Wait(&req, &stat); ←wait for completion of one

communication

 MPI_Waitall(n, reqs, stats); ←wait for completion of
all n communications

 MPI_Waitany(n, reqs, &idx, &stat); ←wait for
completion of one of n communications

 MPI_Test(&req, &flag, &stat); ←check completion of

one communication

 MPI_Testall, MPI_Testany…

22

Assignments in MPI Part
(Abstract)
Choose one of [M1]—[M3], and submit a report
Due date: May 28 (Monday)

[M1] Parallelize “diffusion” sample program by MPI.
[M2] Improve mm-mpi sample in order to reduce memory

consumption.
[M3] (Freestyle) Parallelize any program by MPI.

For more detail, please see No. 7 slides or OCW-i.

23

24

Next Class
 MPI (3)
 Improvement of “matrix multiply” sample
 Group Communication

	2018�Practical Parallel Computing�(実践的並列コンピューティング)�No. 8
	Notes on MPI_Recv:�Message Matching (1)
	Notes on MPI_Recv:�Message Matching (2)
	Notes on MPI_Recv:�What If Message Size is Unmatched
	“diffusion” Sample Program (1) �(Revisited)
	“diffusion” Sample Program (2)�(Revisited)
	Data Structures in diffusion�(Revisited)
	Double Buffering Technique�(Revisited)
	Data Structure in Original “diffusion”
	How Do We Parallelize “diffusion” Sample?
	Considering Data Distribution (1)
	Considering Data Distribution (2)
	Introducing “Halo” Region
	The name of “Halo” Region
	Overview of MPI “diffusion”�(Still Unsafe)
	A Sample for Safe Neighbor Communication
	Neighbor Communication
	Non-Blocking Communication
	Non-Blocking Receive
	Behavior of MPI_Irecv
	Non-Blocking Send
	MPI_Wait Family
	Assignments in MPI Part�(Abstract)
	Next Class

