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Notes on MPI_Recv:
Message Matching (1)

MPI_Recv(b, 16, MPI_INT, 2, 200, MPI_COMM_WORLD, &stat);

0

1

source:1
tag:100

…data…

source:2
tag:200

…data…

I only want a message with tag 200 from 2 !

• Receiver specifies “source” and “tag” that it wants to receive
• Generally, several messages may arrive indefinite order
 The message that matches the condition is delivered
• Other messages should be received by other MPI_Recv calls



Notes on MPI_Recv:
Message Matching (2)

 In some algorithms, the sender may not be known beforehand
 cf) client-server model

 For such cases, MPI_ANY_SOURCE / MPI_ANY_TAG can be used
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MPI_Status stat;

MPI_Recv(b, 16, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, 
MPI_COMM_WORLD, &stat);

0

1

source:1
tag:100

…data…

source:2
tag:200

…data…

Everyone is
welcome!

After receipt, receiver can
see stat.MPI_SOURCE and
stat.MPI_TAG



Notes on MPI_Recv:
What If Message Size is Unmatched

MPI_Recv(b, 16, MPI_INT, 0, 100, MPI_COMM_WORLD, &stat);
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0 1

If message is larger than
expected, it’s an error
(the program aborts)

0 1

If message is smaller than
expected, it’s ok
Receiver can know the 

actual size by
MPI_Get_Count(&stat, MPI_INT, &s);

It is a good idea for receiver to prepare enough memory

OK

NG



“diffusion” Sample Program (1) 
(Revisited)

 Density of ink in each point vary according to 
time Simulated by computers

An example of diffusion phenomena:
• Pour a drop of ink into a water glass

© 青木尊之

The ink spreads gradually, and finally the density 
becomes uniform   (Figure by Prof. T. Aoki)
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“diffusion” Sample Program (2)
(Revisited)

 Execution：./diffusion [nt]
 nt: Number of time steps
 nx, ny: Space grid size

 nx=8192, ny=8192 (Fixed. See the code)
 How can we make them variables? (See mm sample)

 Compute Complexity：O(nx×ny×nt)

Available at ~endo-t-ac/ppcomp/18/diffusion/



Data Structures in diffusion
(Revisited)
 Space to be simulated are divided into grids, and 

expressed by arrays (2D in this sample)
NX

NY

Time step t=0 t=1 t=20

• Array elements are computed via timestep, by using 
“previous” data



Double Buffering Technique
(Revisited)
 A simple way is to make arrays for all time steps, but it 

consumes too much memory!
 It is sufficient to have “current” array and “previous” array. 

“Double buffers” are used for many times
An Array for
“even” steps

An Array for
“odd” steps

Compute t=0→t=1

Compute t=1→t=2

Compute t=2→t=3

※ Sample program uses a global variables
float data[2][NY][NX];
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Data Structure in Original 
“diffusion”

An Array for “even” steps An Array for “odd” steps

NX

NY
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How Do We Parallelize 
“diffusion” Sample?
Parallelization method with OpenMP：
[Algorithm] Parallelize spatial (Y or X) for-loop

 Each thread computes its part in the space
 Time (T) loop cannot be parallelized, due to dependency

[Data] Data structure is same as sequential version

With MPI:
[Algorithm] Same policy as OpenMP version

 Each process computes its part in the space
[Data] Arrays are divided among processes

 Each process has its own part of arrays
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Considering Data Distribution (1)

 A color = a process

An Array for “even” steps An Array for “odd” steps



Considering Data Distribution (2)
 A simple distribution is like:
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Computation requires data in other processes
Communication is required
So, where should received data be put?
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Introducing “Halo” Region
 It is a good idea to make additional rows to arrays
 called “Halo” region or “sleeve” region

Halo

Halo

Each time step consists of:
(1) Communication: Recv data and store into “halo” region

 Also neighbor processes need “my” data
(2) Computation: Old data at time t (including “halo”) 
 New data at time t+1

(1)Comm

(1)Comm

(2)
Comp



The name of “Halo” Region
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The Sun

Halo
Sleeves

en.wiktionary.org



15

Overview of MPI “diffusion”
(Still Unsafe)

for (t = 0; t < nt; t++) {

Send B to rank-1, Send D to rank+1

Recv A from rank-1, Recv E from rank+1

Computes points in rows B—D

Switch old and new arrays

} This version is still unsafe, because 
this may cause deadlock

A
B
C
D
E

(1) Communication

(2) Computation



A Sample for Safe Neighbor 
Communication
Available at ~endo-t-ac/ppcomp/18/neicomm/
Execution: mpirun –np [np] ./neicomm

(1) Each process produces a single value (rank2 here)
(2) Each process receives values from its neighbors 

(rank-1 and rank+1)
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Rank 0 Rank 1 Rank 2 Rank 3

0 1 4 9491401



Neighbor Communication

Send to rank-1

Send to rank+1

Recv from rank-1

Recv from rank-1
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Start to send to rank-1

Start to send to rank+1

Recv from rank-1

Recv from rank-1

Finish to send to rank-1

Finish to send to rank+1

Unsafe version  Safe version 

※ It requires a long story to see the reason of deadlock, 
so omitted here
Hint: Not only MPI_Recv, but MPI_Send is “blocking” 
communication if message size is very large

neicomm_safe()
in neicomm sample

neicomm_unsafe()
in neicomm sample



Non-Blocking Communication

 Non-blocking communication: starts a 
communication (send or receive), but does 
not wait for its completion
 MPI_Recv is blocking communication, since it 

waits for message arrival
 Program must wait for its completion later
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MPI_Status stat; 

MPI_Recv(buf, n, type, src, tag, comm, &stat);

MPI_Status stat; 

MPI_Request req;

MPI_Irecv(buf, n, type, src, tag, comm, &req);←start recv

:  (Do domething)

MPI_Wait(&req, &stat); ←wait for completion

MPI_Irecv: starts receiving, but it returns Immediately
MPI_Wait: wait for message arrival
MPI_Request looks like a “ticket” for the communication 19

Non-Blocking Receive



Behavior of MPI_Irecv
 MPI_Irecv itself immediately returns
 Program can use received data after MPI_Wait
※ MPI_Recv = MPI_Irecv + MPI_Wait

20

rank 0 rank 1

Send

Irecv

Wait wait for message arrival

immediately returns

Process can do something
message
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Non-Blocking Send

MPI_Send(buf, n, type, dest, tag, comm);

MPI_Status stat; 

MPI_Request req;

MPI_Isend(buf, n, type, dest, tag, comm, &req); ←start send

:  (Do domething)

MPI_Wait(&req, &stat); ←wait for completion

MPI_Isend: starts sending, but it returns Immediately 
MPI_Wait must be used later
※ MPI_Send = MPI_Isend + MPI_Wait



MPI_Wait Family
 MPI_Wait(&req, &stat); ←wait for completion of one 

communication

 MPI_Waitall(n, reqs, stats); ←wait for completion of 
all n communications

 MPI_Waitany(n, reqs, &idx, &stat); ←wait for 
completion of one of n communications

 MPI_Test(&req, &flag, &stat); ←check completion of 

one communication

 MPI_Testall, MPI_Testany…
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Assignments in MPI Part
(Abstract)
Choose one of [M1]—[M3], and submit a report
Due date: May 28 (Monday)

[M1] Parallelize “diffusion” sample program by MPI.
[M2] Improve mm-mpi sample in order to reduce memory 

consumption.
[M3] (Freestyle) Parallelize any program by MPI.

For more detail, please see No. 7 slides or OCW-i.
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Next Class
 MPI (3)
 Improvement of “matrix multiply” sample
 Group Communication
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