
1

2018
Practical Parallel Computing
(実践的並列コンピューティング)

No. 6

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Shared Memory Parallel
Programming with OpenMP (4)

Considerations in Parallel
Programming
Step1: How we can make “correct” parallel
software
 Is dependency preserved?
 No race condition?

Step2: How we can make “fast” parallel
software
 Is bottleneck small?
 Are tasks well balanced between threads?

2

Towards “Correct” Parallel
Software
 We have learned several OpenMP syntaxes

to make computations parallel
 #pragma omp parallel
 #pragma omp for
 #pragma omp task

 But it is programmer’s responsibility to check
whether the parallelization is correct or not

3

Dependency between
Computations
 If partial computations C1 and C2 are independent, we

can parallelize them
 If they are dependent, we cannot

4

C1: Read a, b and Write c
C2: Read d, e and Write f
C3: Read c and Write g
C4: Read e and Write h
C5: Read i and Write h

Which computations are
independent?

C1&C2 independent

C1&C3 dependent
• c is written by C1, read by C3(!)
C2&C4 independent
• e is read by C2&C4
• Read vs. Read is Ok
C4&C5 dependent
• h is written by C4&C5
• Write vs. Write is NG

Dependency and Parallelism
in Stencil Computations (1)

Consider a stencil computation:
ft+1,x = (ft,x-1 + ft,x + ft,x+1) / 3.0
※ This is simpler than diffusion sample

 We focus on update of a single point
 It includes 3 Read and 1 Write

5

t=49

t=50
t=51

20 2119
x=

Dependency and Parallelism
in Stencil Computations (2)

 Can we compute f50,20 and f50,21 in
parallel? (t is same, x is different)
 f50,20: Read f49,19, f49,20, f49,21 and Write f50,20

 f50,21: Read f49,20, f49,21, f49,22 and Write f50,21

 They are independent (for all pairs of x)

 Can we compute f50,20 and f51,20 in
parallel? (t is different)
 f50,20: Read f49,19, f49,20, f49,21 and Write f50,20

 f51,20: Read f50,19, f50,20, f50,21 and Write f50,21

 They are dependent

6

dependency!!

In Assignment [O1]
• it is OK to parallelize x-loop or y-loop
• it is NG to parallelize t-loop

Read vs. Read is Ok

Partially Dependent Case
 Can we execute C1 and C2 in parallel?
 Here, sum is a shared variable

7

:
[long time to
calculate ans1]

:
sum = sum+ans1;

C1
:

[long time to
calculate ans2]

:
sum = sum+ans2;

C2

We assume
these parts

are independent

 C1 and C2 are dependent, since both write sum
 The answer is no. But do we have to abandon parallel
execution?

dependent

What’s Wrong if Parallelized? (1)

 What happens if C1, C2 are executed in sequential

After execution, sum = 30

 To discuss parallel execution, let’s consider
 In parallel, execution timing is non-deterministic
 “sum = sum + 10” is compiled into machine codes like

 reg1 ← [sum]
 reg1 ← reg1+10
 [sum] ← reg1

8

sum = 0;
C1 (ans1=10)
C2 (ans2=20)

What’s Wrong if Parallelized? (2)

9

Parallel Execution: Case A

Execution of C1 Execution of C2

reg1 ← [sum]

reg1 ← reg1+10

[sum] ← reg1

Here, sum=30 Different
result!

Parallel Execution: Case B

reg1 ← [sum]

reg1 ← reg1+10

[sum] ← reg1
reg1 ← [sum]

reg1 ← reg1+20

[sum] ← reg1

reg1 ← [sum]

reg1 ← reg1+20

[sum] ← reg1

Execution of C1 Execution of C2

Here, sum=20

Such a bad situation is called “Race Condition”

10

Mutual Exclusion to
Avoid Race Condition

⇒ With mutual exclusion,
race condition is avoided

Mutual exclusion (mutex):
Control threads so that only a
single thread can enter a
“specific region”
 The region is called critical

section

Case B with Mutual Exclusion

CS start

CS end

CS終了

CS start

Blocked!

sum=30

reg1 ← [sum]

reg1 ← reg1+10

[sum] ← reg1

reg1 ← [sum]

reg1 ← reg1+20

[sum] ← reg1

11

Mutual Exclusion in OpenMP

int sum = 0;
#pragma omp parallel

{
[do something]

#pragma omp critical
{
sum = sum + myans;

}
}

#pragma omp critical makes
the following block/sentence
be critical section

Examples available at
~endo-t-ac/ppcomp/18/
count-omp/

cf) ./count-XXX [n]
Each thread adds 1 to a

shared counter for n times
Correct answer would be

n × OMP_NUM_THREADS

- count-bad: Wrong version
- count-good: Correct, but slow

version with mutex
- count-fast: Correct and fast

version

Towards “Fast” Parallel
Software
 Most algorithms include both
 Computations that can be parallelized
 Computations that cannot (or hardly) be parallelized

⇒ The later raises problems called “bottleneck”

12

Bottleneck

Bottle

Various Bottlenecks

13

Bottleneck by
critical sections

Bottleneck by
sequential part

Bottleneck by
load imbalance

There are more, such as architectural bottlenecks

Here

Amdahl’s Law
 In an algorithm, we let
 T1 : execution time with 1 processor core
 α be ratio of computation that can be parallelized
 1-α be ratio that cannot be parallelized (bottleneck)

⇒ Estimated execution time with p processor
cores is Tp = ((1 – α) + α / p) T1
 smaller is better

14

Due to bottleneck, there is limitation in speed-up
no matter how many cores are used

T∞ = (1-α) T1

An Illustration of Amdahl’s Law

15

Parallelized
α T1

Bottleneck
(1-α) T1

With
p=2

With
p=4

With
p=1

T1

Scalability: Performance of
software or algorithm is improved
with larger resources (p)

Amdahl’s law tells us
• if we want scalability with p～10, α should be >0.9
• if we want scalability with p～100, α should be >0.99

The Fact is Stranger Than
Theory

 According to Amdahl’s law, Tp is monotonically decreasing
 Larger p is not harmful?

16

count-good sample in ~endo-t-ac/ppcomp/18/count-omp/
(TSUBAME3 node)
 p=1: 1 thread ×10M times 0.18sec
 p=2: 2 threads × 5M times 0.55～0.71sec
 p=5: 5 threads × 2M times 1.0～1.4sec
 p=10: 10 threads × 1M times 1.3～1.5sec

Slower

Reducing bottleneck is even more important
(than Amdahl’s law tells)

Reducing Bottlenecks
 Approaches for reducing

bottlenecks depend on algorithms!
 We need to consider, consider
 Some algorithms are essentially

difficult to be parallelized

17

 Some directions
 Reducing access to shared variables
 Reducing length of dependency chains

 called “critical path”
 Reducing parallelization costs

 entering/exiting “omp parallel”, “omp critical”… is not free
:

Case of “count-omp” Sample
 “count-good” version has too frequent access to a

shared variables
 count-fast version introduces private variables

Step 1: Each thread accumulates values into private “local_s”
Step 2: Then each thread does “s += local_s” in a critical

section once per thread
 With this version, 10threads × 1M times add 4msec

18

※ “omp for reduction(…)” is internally
compiled to use a similar method

Case of a Simple Dynamic
Programming

19

for (y = 1; y < ny; y++) {
for (x = 1; x < nx; x++) {

Ax,y = f (Ax-1,y, Ax,y-1);
}

}

5
6
7

4
5
6

3
4
5

2
3
4

1
2
3

Parallel X loop?
 NG

Parallel Y loop?
 NG

Elements of the same color
can be computed in parallel

cf) “Edit distance” of
two strings

Case of List Tracing

 “Critical path” has L length
 If L is large and each task is small, tracing the list itself will

become a bottleneck (ex. calling “omp task” for L times)

20

Something to do for each element

Length L

Multiple shorter lists
A tree structure

O(log L)

What We Have Learned in
OpenMP Part
 OpenMP: A programming tool for parallel

computation by using multiple processor cores
 Shared memory parallel model
 #pragma omp parallel Parallel region
 #pragma omp for Parallelize for-loops
 #pragma omp task Task parallelism

 Processor cores we can use are limited a single
node

 In MPI part, we will go over the wall of a node
21

Assignments in OpenMP Part
(Abstract)
Choose one of [O1]—[O3], and submit a report
Due date: May 7 (Monday)

[O1] Parallelize “diffusion” sample program by OpenMP.
(~endo-t-ac/ppcomp/18/diffusion/ on TSUBAME)

[O2] Parallelize “sort” sample program by OpenMP.
(~endo-t-ac/ppcomp/18/sort/ on TSUBAME)

[O3] (Freestyle) Parallelize any program by OpenMP.

For more detail, please see No.3 slides or OCW-i.
22

23

Next Class:
 Part 2: Distributed Memory Parallel

Programming with MPI (1)

	2018�Practical Parallel Computing�(実践的並列コンピューティング)�No. 6
	Considerations in Parallel Programming
	Towards “Correct” Parallel Software
	Dependency between Computations
	Dependency and Parallelism�in Stencil Computations (1)
	Dependency and Parallelism�in Stencil Computations (2)
	Partially Dependent Case
	What’s Wrong if Parallelized? (1)
	What’s Wrong if Parallelized? (2)
	Mutual Exclusion to �Avoid Race Condition
	Mutual Exclusion in OpenMP
	Towards “Fast” Parallel Software
	Various Bottlenecks
	Amdahl’s Law
	An Illustration of Amdahl’s Law
	The Fact is Stranger Than Theory
	Reducing Bottlenecks
	Case of “count-omp” Sample
	Case of a Simple Dynamic Programming
	Case of List Tracing
	What We Have Learned in OpenMP Part
	Assignments in OpenMP Part�(Abstract)
	Next Class:

