
1

2018
Practical Parallel Computing
(実践的並列コンピューティング)

No. 13

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

GPU Programming (3)

CUDA and OpenACC for GPUs
 OpenACC

 C/Fortran + directives (#pragma acc …), Easier programming
 PGI compiler works

 module load pgi
 pgcc –acc … XXX.c

 Basically for data parallel programs with for-loops
 Less freedom in algorithms

 CUDA
 Most popular and suitable for higher performance
 Use “nvcc” command for compile

 module load cuda
 nvcc … XXX.cu

Programming is harder, but more general
2

Comparing OpenMP/OpenACC/CUDA
OpenMP OpenACC CUDA

Processors CPU CPU+GPU CPU+GPU
File extension .c, .cc .c, .cc .cu

To start parallel
(GPU) region

#pragma omp
parallel

#pragma acc kernels func<<<…, …>>>()

To specify # of
threads

export OMP_NUM
_THREADS=…

(num_gangs,
vector_length etc)

func<<<…, …>>>()

Derisable # of
threads

of CPU cores or
less

of GPU cores or “more”

To get thread ID omp_thread_num() - blockIdx, threadIdx
Parallel for loop #pragma omp for #pragma acc loop -

Task parallel #pragma omp task - -
To allocate device

memory
- #pragma acc data cudaMalloc()

To copy to/from
device memory

- #pragma acc data cudaMemcpy()

Function on GPU - #pragma acc routine __global__,__device__
3

※ “# of XXX” = “The number of XXX”

OpenACC Programs Look Like

4

int A[100], B[100];
int i;

#pragma acc data copy(A,B)
#pragma acc kernels
#pragma acc loop independent

for (i = 0; i < 100; i++) {
A[i] += B[i];

}

Executed on GPU
in parallel

CUDA Programs Look Like

5

int A[100], B[100];
int *DA, *DB;
int i;
cudaMalloc(&DA, sizeof(int)*100);
cudaMalloc(&DB, sizeof(int)*100);
cudaMemcpy(DA,A,sizeof(int)*100,

cudaMemcpyHostToDevice);
cudaMemcpy(DB,B,sizeof(int)*100,

cudaMemcpyHostToDevice);

add<<<20, 5>>>(DA, DB);

cudaMemcpy(A,DA,sizeof(int)*100,
cudaMemcpyDeviceToHost);

__global__ void add
(int *DA, int *DB)

{
int i = blockIdx.x*blockDim.x

+ threadIdx.x;
DA[i] += DB[i];

}

Executed on GPU
(called a kernel function)

Sample:
~endo-t-ac/ppcomp/18/add-cuda/

6

Compiling CUDA Programs/
Submitting GPU Jobs
 Compile .cu file using the NVIDIA CUDA toolkit

 module load cuda, and then use nvcc
 -arch sm_60 option for new GPUs

Also see Makefile in the sample directory

 Job submission method is same as OpenACC version

#!/bin/sh
#$ -cwd
#$ -l q_node=1
#$ -l h_rt=00:10:00

./add

add-cuda/job.sh

qsub job.sh

Preparing Data on Device
Memory
(1) Allocate a region on device memory
cf) cudaMalloc((void**)&DA, size);

(2) Copy data from host to device
cf) cudaMemcpy(DA, A, size, cudaMemcpyHostToDevice);

7

CPU GPU

A (1) DA
Host memory Device memory

(2)

Note: cudaMalloc and cudaMemcpy must be called on CPU, NOT on GPU

Comparing OpenACC and
CUDA

8

OpenACC CUDA
Both allocation and copy are
done by … data copyin

cudaMalloc and cudaMemcpy
are separated

One variable name A may
represent both
• A on host memory
• A on device memory

Programmer have to prepare
two pointers, such as A and DA

int A[100];
#pragma acc data copy(A)
#pragma acc kernels
{
… A[i] …

} on GPU

on CPU int A[100];
int *DA;
cudaMalloc(&DA, …);
cudaMemcpy(DA, A, …, …);
// Here CPU cannot access DA[i]

func<<<…, …>>>(DA, …);

Calling A GPU Kernel Function
from CPU
 A region executed by GPU must be a distinct function

 called a GPU kernel function

9

[CPU side]

func<<<20, 5>>>(…); __global__ void func(…)
{

:
return;

}

[GPU side]call

return

A GPU kernel function (called from CPU)
 needs __global__ keyword
 can take parameters
 can NOT return value; return type must be void

of thread blocks
of threads per block
In this case, 20x5=100
threads run on GPU

Copying Back Data from GPU

 Copy data using cudaMemcpy
 cf) cudaMemcpy(A, DA, size, cudaMemcpyDeviceToHost);
 4th argument is one of

 cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost
 cudaMemcpyDeviceToDevice, cudaMemcpyHostToHost
 cudaMemcpyDefault Detect memory type automatically

 When a memory area is unnecessary, free it
 cf) cudaFree(DA);

10

A DA
Host memory Device memory

Threads in CUDA

cf) func <<< 4, 3 >>> (); 12 threads

11

A thread blockA grid A thread

Number of thread blocks
= gridDim

Number of threads per block
= blockDim

CUDA: Specify 2 numbers (at least) for number of threads,
when calling a GPU kernel function

OpenACC - Gang Worker Vector lane
CUDA Grid Thread block (Warp) Thread
Hardware GPU SMX (Warp) CUDA core

To See Who am I
 By reading the following special variables, each thread can

see its thread ID, etc.
 My ID

 blockIdx.x: Index of the block the thread belong to (≧0)
 threadIdx.x: Index of the thread (inside the block) (≧0)

 Number of thread/blocks
 gridDim.x: How many blocks are running
 blockDim.x: How many threads (per block) are running

12

Note: In order to see the entire sequential ID, we
should compute

blockIdx.x * blockDim.x + threadIdx.x

Parallelism in add sample
 It is ok to make >1000, >10000 threads on CUDA
 We use N threads for N elements computation

add<<<N/BS, BS>>>(.....);

gridDim blockDim (=5 in this sample)

Note1: <<<N, 1>>> or <<<1, N>>> also works, but speed is not good

Note2: To support the case N is indivisible by BS, we should use
<<<(N+BS-1)/BS, BS>>>
But # of threads may be larger N. “Extra” threads (id≧N) should
not work. See add-cuda/add2.cu

1 element for 1 thread No need of “for” loop in this sample

Rules for Memory/Variables
 Variables declared in GPU kernel functions are

“thread private”

 Device memory is shared by all CUDA threads
 Be careful to avoid race condition problem (multiple

threads write same address)
 Reading same address is ok

 Do not forget host memory and device memory
are distributed

z is
15

z is
4

z is
7

z is
4

z is
21

z is
9

Two Types of GPU Kernel Functions
1) Functions with __global__ keyword

 “Gateway” from CPU
 Return value type must be “void”

2) Function with __device__ keyword
 Callable only from GPU
 Can have return values
 Recursive call is OK

Host
Function

on CPU on GPU

Function with
__global__

Function with
__device__

f(x); f(x);
f(x);f<<<gs,bs>>>(x);

In OpenACC,
#pragma acc routine

What Can be Done in GPU
Functions?
 Basic computations (+, -, *, /, %, &&, ||...) are OK
 if, for, while, return are OK
 Device memory access is OK
 Host memory access is NG
 Calling host functions is NG
 Calling most of functions in libc or other libraries for CPUs

are NG
 Several mathematical functions, sin(), sqrt()… are OK

 like OpenACC
 Exceptionally, printf() is OK

 unlike OpenACC
 Calling malloc()/free() on GPU is OK, if the size is small

 If we need large regions on device memory, call cudaMalloc()
from CPU

17

“mm” sample: Matrix Multiply
(Revisited, related to [G2])

A: a (m×k) matrix, B: a (k×n) matrix
C: a (m×n) matrix

C ← A × B

 Supports variable matrix size.
 Each matrix is expressed as a 1D

array by column-major format
 Execution:./mm [m] [n] [k]

CA

B

m

k

k

n

CUDA version available at ~endo-t-ac/ppcomp/18/mm-cuda/

On CUDA, We need to design
(1) How we parallelize computation
(2) How we put data on host memory & device memory

How We Parallelize Computation

OpenMP
Parallelize column-loop
(or row-loop)

18

A

B

C

j

In mm, we can compute different C elements in parallel
•On the other hand, it is harder to parallelize dot-product loop

CUDA
We can create too many threads
 M x N threads are ok!!

Parallelize row&column of C
1 thread computes 1 element

B

CA

※ This is not the unique way

Creating Many Threads
 Now we want to make M*N (may be >1,000,000) threads

 <<<(M*N)/BS, BS>>> is ok, but…
 On CUDA, gridDim and blockDim may have “dim3” type

(3D vector structure with x, y, z fields)

19

cf) func <<< dim3(4,2,1), dim3(3,2,1) >>> (); 48 threads

※ This example is the case of 2D (Z dimensions are 1)

Thread IDs in multi-dimensional cases

 For every thread,
gridDim.x=4, gridDim.y=2, gridDim.z=1
blockDim.x=3, blockDim.y=2, blockDim.z=1

 For the thread with blue mark,
blockIdx.x=1, blockIdx.y=1, blockIdx.z=0
threadIdx.x=2, threadIdx.y=0, threadIdx.z=0

20

In the case of func <<< dim3(4,2,1), dim3(3,2,1) >>> ();

Threads in mm-cuda Sample
 The total number of threads are M*N
 How do we determine gridDim, blockDim?

 <<<M, N>>> does not work for constraints explained later

 Here, we use fixed blockDim (x=16, y=16 256 threads per block)
 gridDim is computed from M, N

 x is mapped to column index, y is mapped to row index (※)

21

M

N

C

N

M

※ A different mapping is possible,
but inefficient (in the next class)

Code in mm-cuda

22

matmul_kernel<<<dim3(m / BS, n / BS, 1), dim3(BS, BS, 1)>>>
(DA, DB, DC, m, n, k);

BS=16 in this sample
Actually, we use rounding up

In matmul_kernel function,
:

j = blockIdx.y * blockDim.y + threadIdx.y;
i = blockIdx.x * blockDim.x + threadIdx.x;

: This thread computes Cij

gridDim blockDim

Limitations on Number of
Threads

23

func<<<dim3(gx, gy, gz), dim3(bx, by, bz)>>> (...);

≦ 231-1
≦ 65535 ≦ 1024 ≦64

Also, bx*by*bz must be ≦1024

BlockDim has severe limitation
That is why mm-cuda uses fixed BlockDim (16x16x1)

Notes in Time Measurement

 clock(), gettimeofday() must be called from CPU
 For accurate measurement, we should call

cudaDeviceSynchronize() before measurement
 Actually GPU kernel function call and

cudaMemcpy(HostToDevice) are non-blocking
 “non-blocking” like MPI_Isend, MPI_Irecv

Larger Matrix Multiply
(Concept, Related to [G2])

25

mm fails with too large m, n, k, since cudaMalloc fails
• such as ./mm 2000 600000 2000

A

B

C

Host memory Device memory

A

Bp

Cp
m

k

n

 Dividing large matrices will solve the issue
 Do we need to transfer A each step?
 We do not need Bp/Cp on host

“diffusion” Sample Program (1)
(Revisited, related to [G1])

 Density of ink in each point vary according to
time Simulated by computers

 Stencil computation

An example of diffusion phenomena:
•Pour a drop of ink into a water glass

© 青木尊之

The ink spreads gradually, and finally the density
becomes uniform (Figure by Prof. T. Aoki)

27

How Do We Parallelize
“diffusion” Sample?

Parallelization method with OpenMP：
[Algorithm] Parallelize spatial (Y or X) for-loop

 “1 parallel region = 1 time step” is easier
 Each thread computes its part in the space
 Time (T) for-loop cannot be parallelized, due to dependency

[Data] Data structure is same as sequential version

With CUDA:
[Algorithm] Similar policy as OpenMP version

 “1 GPU kernel function call = 1 time step” is easier
 Unlike OpenMP, “1 thread = 1 point” policy is ok

[Data] Data structure is same as sequential version, but…
 When should we do cudaMemcpy?

28

Parallelize “diffusion” Sample

 In diffusion, computation of a new point requires 5 old
points (5-point stencil)

 Points on boundary are exceptional. In this sample, no
computation is done

Double
buffering

An Array for “even” steps An Array for “odd” steps

NX

NY

Considering gridDim/blockDim
 Points [1, NX-1)×[1, NY-1), excluded

boundary, should be computed.
There are choices:
(A) Create NX x NY threads
(B) Create (NX-2) x (NY-2) threads

 For gridDim/blockDim, using “dim3” type
would be a good idea

Actually, we need rounding up and
excluding extra threads
“mm-cuda” sample is a hint

 On the other hand, <<<NX, NY>>> is not
good
 BS must be 1024 or less

29

int bs =16
…<<< dim3(NX/bs, NY/bs, 1),
dim3(bs,bs,1)>>>…

bs

bs
(A)

(B)

Mapping between Threads and
Data

C

N

M

mm-cuda:
Matrices has
column-major format

diffusion:
2D array has
row-major format

CUDA threads

??

j = blockIdx.y * blockDim.y +
threadIdx.y;
i = blockIdx.x * blockDim.x +
threadIdx.x;
: This thread computes Cij

NX

NY

y = blockIdx.y * blockDim.y +
threadIdx.y;
x = blockIdx.x * blockDim.x +
threadIdx.x;
: This thread computes[y][x]

[Q] What if the dimensions are exchanged?

Assignments in this Course
 There is homework for each part. Submissions of reports
for 2 parts are required
 Also attendances will be considered

31

Part 1
OpenMP

Part 2
MPI

Part 3
GPU

[O1] diffusion
[O2] sort
[O3] free

[M1] diffusion
[M2] mm
[M3] free

[G1] diffusion
[G2] mm
[G3] free

Select
1 problem

Select
2 parts

Select
1 problem

Select
1 problem

32

Assignments in GPU Part
(Abstract)
Choose one of [G1]—[G3], and submit a report
Due date: June 14 (Thursay)

[G1] Parallelize “diffusion” sample program by
OpenACC or CUDA

[G2] Improve “mm-acc” or “mm-cuda” to support larger
matrices

[G3] (Freestyle) Parallelize any program by OpenACC
or CUDA.

33

Notes in Submission
 Submit the followings via OCW-i

(1) A report document
 A PDF or MS-Word file, 2 pages or more
 in English or Japanese (日本語もok)

(2) Source code files of your program
 If you use multiple files, you can use “.zip” or “.tgz”

 Report should include:
Which problem you have chosen
How you parallelized

 It is even better if you mention efforts for high performance or new
functions

Performance evaluation on TSUBAME
 With varying number of processor cores
 With varying problem sizes
 Discussion with your findings
 Other machines than TSUBAME are ok, if available

34

Next Class:
 GPU Programming (4)
 Performance of GPU programs

(OpenACC/CUDA)

	2018�Practical Parallel Computing�(実践的並列コンピューティング)�No. 13
	CUDA and OpenACC for GPUs
	Comparing OpenMP/OpenACC/CUDA
	OpenACC Programs Look Like
	CUDA Programs Look Like
	Compiling CUDA Programs/�Submitting GPU Jobs
	Preparing Data on Device Memory
	Comparing OpenACC and CUDA
	Calling A GPU Kernel Function from CPU
	Copying Back Data from GPU
	Threads in CUDA
	To See Who am I
	Parallelism in add sample
	Rules for Memory/Variables
	Two Types of GPU Kernel Functions
	What Can be Done in GPU Functions?
	“mm” sample: Matrix Multiply�(Revisited, related to [G2])
	How We Parallelize Computation
	Creating Many Threads
	Thread IDs in multi-dimensional cases
	Threads in mm-cuda Sample
	Code in mm-cuda
	Limitations on Number of Threads
	Notes in Time Measurement
	Larger Matrix Multiply�(Concept, Related to [G2])
	“diffusion” Sample Program (1) �(Revisited, related to [G1])
	How Do We Parallelize “diffusion” Sample?
	Parallelize “diffusion” Sample
	Considering gridDim/blockDim
	Mapping between Threads and Data
	Assignments in this Course
	Assignments in GPU Part�(Abstract)
	Notes in Submission
	Next Class:

