
1

2018
Practical Parallel Computing
(実践的並列コンピューティング)

No. 9

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Distributed Memory Parallel
Programming with MPI (3)

2

“mm” sample: Matrix Multiply
(Revisited, related to [M2])

A: a (m×k) matrix, B: a (k×n)
matrix

C: a (m×n) matrix
C ← A × B

 Algorithm with a triple for loop
 Supports variable matrix size.
 Each matrix is expressed as a 1D

array by column-major format

 Execution: mpirun –np [np] ./mm
[m] [n] [k]

CA

B

m

k

k

n

MPI version available at ~endo-t-ac/ppcomp/18/mm-mpi/

3

Programming Data Distribution
(for mm-mpi sample)

A

B0

AC0

B1

C1 A

B2

C2 A

B3

C3

A

B

C

Design distribution
method:

I will divide B, C
vertically.
I will put replicas of
A on every process...

Programming actual location:

This is not a unique solution. How about other solutions?

Discussion on Considering
Data Distribution
 Data distribution may affect to
 Communication costs
 Memory consumption
 (Sometimes, computation costs)

 Smaller is better
 To reduce communication costs, we

should put “dependent” data on the
same processes

4
But there may be tradeoffs among them

5

Reconsidering Data Distribution
of mm-mpi

 Getting Ci,j requires i-th row of A and j-th column of B

A

B

C

C is divided in col-wise
⇒ Similarly B

A is replicated

A

B

C

C is divided in row-wise
⇒ Similarly A

B is replicated

0 1
2 3

0&1
2&3

1&30&2

C is divided in 2D
⇒ A:row-wise + replica

B:col-wise + replica

Among them, the third version has lowest memory consumption

Total Comm. 0 (※) 0 (※) 0 (※)
Totel Mem. O(mkp+nk+mn) O(mk+nkp+mn) O(mkp1/2+nkp1/2+mn)

p: the number of processes
(※) If initial matrix is owned by one process, we need communication before computation

Reducing Memory Consumption
Further
 Even in the third version, memory consumption is

O(mkp1/2+nkp1/2+mn) > O(mk+nk+mn) (theoretical minimum)
 If p=10000, we consume 100x larger memory
 we cannot solve larger problems on supercomputers

 To reduce memory consumption, we want to eliminate replica!
 But this increases communication costs

6

7

Data Distribution with Less
Memory Consumption

Algorithm
Step 0：
P0 sends A0 to all other processes
Every process Pi computes

Ci += A0 × B0,i

Step 1：
P1 sends A1 to all other processes
Every process Pi computes

Ci += A1 × B1,i

:
Repeat until Step (p-1)

A
B

Not only B/C, but A is divided
(In this example, column-wise)
⇒ We need communication!

C0 C1 C2 C3

A0
A1

A2
A3

B0,0
B1,0
B2,0
B3,0

B0,1
B1,1
B2,1
B3,1

B0,2
B1,2
B2,2
B3,2

B0,3
B1,3
B2,3
B3,3

Pi = Process i

Total Comm: O(mkp) Total Mem: O(mk+nk+mn)

8

Actual Data Distribution of
Memory Reduced Version

 Additionally, every process should prepare a receive
buffer (A’ in the figure)
 A’ is used for arguments of MPI_Recv()

B0

C0

B1

C1

A0 A’ A1 A’

 Basically, every process
has partial A, B, C

[Q] What if a process uses Ai for MPI_Recv() ?

Improvements of Memory
Reduced Version
Followings are options (not mandatory) in
assignments [M2]
1.Use SUMMA (scalable universal matrix
multiplication algorithm)
 http://www.netlib.org/lapack/lawnspdf/lawn96.pdf
 Replica is eliminated, and matrices are divided in 2D

2.Use collective communications (described
hereafter)

9

10

Peer-to-peer Communications
 Communications we have learned are called peer-to-

peer communications
 A process sends a message. A process receives it

※ MPI_Irecv, MPI_Isend also does peer-to-peer communications

Send! Recv!

Blocking Non-Blocking

Peer-to-Peer MPI_Send,
MPI_Recv…

MPI_Isend,
MPI_Irecv…

Collective MPI_Bcast,
MPI_Reduce…

(MPI_Ibcast,
MPI_Ireduce…)

11

Collective Communications
（Group Communications)

 Collective communications involves many processes
 MPI provides several collective communication patterns

 Bcast, Reduce, Gather, Scatter, Barrier・・・
 All processes must call the same communication function

 Something happens for all of them

Reduce! Reduce! Reduce! Reduce! Reduce!

12

One of Collective Communications:
Broadcast by MPI_Bcast

cf) rank 0 has “int a” (called root process). We want to
send it to all other processes

MPI_Bcast(&a, 1, MPI_INT, 0, MPI_COMM_WORLD);
 All processes (in the communicator) must call MPI_Bcast(),

including rank 0
 All other process will receive the value on memory region a
rank 0

5a

rank 1

a

rank 2

a

rank 3

a5 5 5

※ 1st argument has a bit complicated role;
it is “input” on the root process, and “output” on other processes

13

MPI_Bcast Can Be Used in
Memory Reduced MM

 In Step r, Process r becomes the root
 It sends Ar to all other processes
 This is “broadcast” pattern. We can use MPI_Bcast!
Note: Root wants to send Ar. Others want to receive to A’ Different
pointers

B0

C0

B1

C1

A0 A’ A1 A’ B2

C2

A2 A’

Solution 1:
Rank r copies Ar to A’
and then MPI_Bcast(A’, …);

Solution 2:
if (I am rank r) {MPI_Bcast(Ar, …); }
else {MPI_Bcast(A’, …); }

“Do I Really Need to Learn
New Functions?”

14

0

100

200

300

400

500

0 10 20 30 40

Ti
m

e
(m

s)

Number of Processes

64MB message

Send&Recv

MPI_Bcast

0

100

200

300

400

500

0 20 40 60 80
Ti

m
e

(m
s)

Message size (MB)

32 processes

Send&Recv

MPI_Bcast

 In most cases, MPI_Bcast is faster than our program
 Especially when p is larger !
 The reason is MPI uses “scalable” communication algorithms
cf) http://www.mcs.anl.gov/~thakur/papers/mpi-coll.pdf

faster faster

 No, you can use MPI_Send/MPI_Recv multiple times
instead of MPI_Bcast, but…
In the graph, rank 0 called MPI_Send for p-1 times to other processes

measured
on TSUBAME2

15

Reduction by MPI_Reduce
cf) Every process has “int a”. We want to sum of them.

MPI_Reduce(&a, &b, 1, MPI_INT, MPI_SUM, 0,
MPI_COMM_WORLD);

 Every process must call MPI_Reduce()

 The sum is put on b on root process (rank 0 now)

 Operation is one of MPI_SUM, MPI_PROD(product),
MPI_MAX, MPI_MIN, MPI_LAND (logical and), etc.

rank 0

4a
rank 1

7a
rank 2

1a
rank 3

2a

b b b b14

root processoperation

MPI Version of “pi” Sample

16

x
x

x

x

x
x

xx

 pi-mpi sample
~endo-t-ac/ppcomp/18/pp-mpi/
 We need to get “total number” of points in

yellow area Reduction

1. Each process calculates local sum
2. Rank 0 obtains the final sum by MPI_Reduce

Difference with “omp for
reduction” in OpenMP

 Syntaxes are completely different
 Computations are also different
 In OpenMP

 Do “s += a[i]” in parallel for loop with reduction(+:s)

 In MPI
 If each input is an array, output is also an array
 Operations are done for each index

17

4 7 2 3 0 1 5 6 5 33

4 7 2 3 0 1 5 6 5 12 13 8

18

MPI_Allreduce
 Allreduce = Reduction + Bcast

MPI_Allreduce(&a, &b, 1, MPI_INT, MPI_SUM,
MPI_COMM_WORLD);

 The sum is put on b on all processes

rank 0

4a
rank 1

7a
rank 2

1a
rank 3

2a

b b b b14 14 14 14

MPI_Barrier
 Barrier synchronization: processes are

stopped until all processes reach the point
MPI_Barrier(MPI_COMM_WORLD);

 Used in sample programs, to measure execution time
more precisely

19

Other Collective
Communications
 MPI_Scatter

 An array on a process is “scattered” to all processes
 cf) Process 0 has an array of length 10,000. There are 10

processes. The array is divided to parts of length 1,000 and
scatterd

 MPI_Gather
 Data on all processes are “gathered” to the root process.
 Contrary to MPI_Scatter

 MPI_Allgather
 Similar to MPI_Gather. Gathered data are put on all processes
：

20

Assignments in MPI Part
(Abstract)
Choose one of [M1]—[M3], and submit a report
Due date: May 28 (Monday)

[M1] Parallelize “diffusion” sample program by MPI.
[M2] Improve mm-mpi sample in order to reduce memory

consumption.
[M3] (Freestyle) Parallelize any program by MPI.

For more detail, please see No. 7 slides or OCW-i.

21

22

Next Class
 MPI (4)
 Discussion on performance of MPI programs

	2018�Practical Parallel Computing�(実践的並列コンピューティング)�No. 9
	“mm” sample: Matrix Multiply�(Revisited, related to [M2])
	Programming Data Distribution�(for mm-mpi sample)
	Discussion on Considering Data Distribution
	Reconsidering Data Distribution of mm-mpi
	Reducing Memory Consumption�Further
	Data Distribution with Less Memory Consumption
	Actual Data Distribution of Memory Reduced Version
	Improvements of Memory Reduced Version
	Peer-to-peer Communications
	Collective Communications�（Group Communications)
	One of Collective Communications: Broadcast by MPI_Bcast
	MPI_Bcast Can Be Used in�Memory Reduced MM
	“Do I Really Need to Learn New Functions?”
	Reduction by MPI_Reduce
	MPI Version of “pi” Sample
	Difference with “omp for reduction” in OpenMP
	MPI_Allreduce
	MPI_Barrier
	Other Collective Communications
	Assignments in MPI Part�(Abstract)
	Next Class

