
1

2018
Practical Parallel Computing
(実践的並列コンピューティング)

No. 9

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Distributed Memory Parallel
Programming with MPI (3)

2

“mm” sample: Matrix Multiply
(Revisited, related to [M2])

A: a (m×k) matrix, B: a (k×n)
matrix

C: a (m×n) matrix
C ← A × B

 Algorithm with a triple for loop
 Supports variable matrix size.
 Each matrix is expressed as a 1D

array by column-major format

 Execution: mpirun –np [np] ./mm
[m] [n] [k]

CA

B

m

k

k

n

MPI version available at ~endo-t-ac/ppcomp/18/mm-mpi/

3

Programming Data Distribution
(for mm-mpi sample)

A

B0

AC0

B1

C1 A

B2

C2 A

B3

C3

A

B

C

Design distribution
method:

I will divide B, C
vertically.
I will put replicas of
A on every process...

Programming actual location:

This is not a unique solution. How about other solutions?

Discussion on Considering
Data Distribution
 Data distribution may affect to
 Communication costs
 Memory consumption
 (Sometimes, computation costs)

 Smaller is better
 To reduce communication costs, we

should put “dependent” data on the
same processes

4
But there may be tradeoffs among them

5

Reconsidering Data Distribution
of mm-mpi

 Getting Ci,j requires i-th row of A and j-th column of B

A

B

C

C is divided in col-wise
⇒ Similarly B

A is replicated

A

B

C

C is divided in row-wise
⇒ Similarly A

B is replicated

0 1
2 3

0&1
2&3

1&30&2

C is divided in 2D
⇒ A:row-wise + replica

B:col-wise + replica

Among them, the third version has lowest memory consumption

Total Comm. 0 (※) 0 (※) 0 (※)
Totel Mem. O(mkp+nk+mn) O(mk+nkp+mn) O(mkp1/2+nkp1/2+mn)

p: the number of processes
(※) If initial matrix is owned by one process, we need communication before computation

Reducing Memory Consumption
Further
 Even in the third version, memory consumption is

O(mkp1/2+nkp1/2+mn) > O(mk+nk+mn) (theoretical minimum)
 If p=10000, we consume 100x larger memory 
 we cannot solve larger problems on supercomputers

 To reduce memory consumption, we want to eliminate replica!
 But this increases communication costs

6

7

Data Distribution with Less
Memory Consumption

Algorithm
Step 0：
P0 sends A0 to all other processes
Every process Pi computes

Ci += A0 × B0,i

Step 1：
P1 sends A1 to all other processes
Every process Pi computes

Ci += A1 × B1,i

:
Repeat until Step (p-1)

A
B

Not only B/C, but A is divided
(In this example, column-wise)
⇒ We need communication!

C0 C1 C2 C3

A0
A1

A2
A3

B0,0
B1,0
B2,0
B3,0

B0,1
B1,1
B2,1
B3,1

B0,2
B1,2
B2,2
B3,2

B0,3
B1,3
B2,3
B3,3

Pi = Process i

Total Comm: O(mkp) Total Mem: O(mk+nk+mn)

8

Actual Data Distribution of
Memory Reduced Version

 Additionally, every process should prepare a receive
buffer (A’ in the figure)
 A’ is used for arguments of MPI_Recv()

B0

C0

B1

C1

A0 A’ A1 A’

 Basically, every process
has partial A, B, C

[Q] What if a process uses Ai for MPI_Recv() ?

Improvements of Memory
Reduced Version
Followings are options (not mandatory) in
assignments [M2]
1.Use SUMMA (scalable universal matrix
multiplication algorithm)
 http://www.netlib.org/lapack/lawnspdf/lawn96.pdf
 Replica is eliminated, and matrices are divided in 2D

2.Use collective communications (described
hereafter)

9

10

Peer-to-peer Communications
 Communications we have learned are called peer-to-

peer communications
 A process sends a message. A process receives it

※ MPI_Irecv, MPI_Isend also does peer-to-peer communications

Send! Recv!

Blocking Non-Blocking

Peer-to-Peer MPI_Send,
MPI_Recv…

MPI_Isend,
MPI_Irecv…

Collective MPI_Bcast,
MPI_Reduce…

(MPI_Ibcast,
MPI_Ireduce…)

11

Collective Communications
（Group Communications)

 Collective communications involves many processes
 MPI provides several collective communication patterns

 Bcast, Reduce, Gather, Scatter, Barrier・・・
 All processes must call the same communication function

 Something happens for all of them

Reduce! Reduce! Reduce! Reduce! Reduce!

12

One of Collective Communications:
Broadcast by MPI_Bcast

cf) rank 0 has “int a” (called root process). We want to
send it to all other processes

MPI_Bcast(&a, 1, MPI_INT, 0, MPI_COMM_WORLD);
 All processes (in the communicator) must call MPI_Bcast(),

including rank 0
 All other process will receive the value on memory region a
rank 0

5a

rank 1

a

rank 2

a

rank 3

a5 5 5

※ 1st argument has a bit complicated role;
it is “input” on the root process, and “output” on other processes

13

MPI_Bcast Can Be Used in
Memory Reduced MM

 In Step r, Process r becomes the root
 It sends Ar to all other processes
 This is “broadcast” pattern. We can use MPI_Bcast!
Note: Root wants to send Ar. Others want to receive to A’ Different
pointers

B0

C0

B1

C1

A0 A’ A1 A’ B2

C2

A2 A’

Solution 1:
Rank r copies Ar to A’
and then MPI_Bcast(A’, …);

Solution 2:
if (I am rank r) {MPI_Bcast(Ar, …); }
else {MPI_Bcast(A’, …); }

“Do I Really Need to Learn
New Functions?”

14

0

100

200

300

400

500

0 10 20 30 40

Ti
m

e
(m

s)

Number of Processes

64MB message

Send&Recv

MPI_Bcast

0

100

200

300

400

500

0 20 40 60 80
Ti

m
e

(m
s)

Message size (MB)

32 processes

Send&Recv

MPI_Bcast

 In most cases, MPI_Bcast is faster than our program
 Especially when p is larger !
 The reason is MPI uses “scalable” communication algorithms
cf) http://www.mcs.anl.gov/~thakur/papers/mpi-coll.pdf

faster faster

 No, you can use MPI_Send/MPI_Recv multiple times
instead of MPI_Bcast, but…
In the graph, rank 0 called MPI_Send for p-1 times to other processes

measured
on TSUBAME2

15

Reduction by MPI_Reduce
cf) Every process has “int a”. We want to sum of them.

MPI_Reduce(&a, &b, 1, MPI_INT, MPI_SUM, 0,
MPI_COMM_WORLD);

 Every process must call MPI_Reduce()

 The sum is put on b on root process (rank 0 now)

 Operation is one of MPI_SUM, MPI_PROD(product),
MPI_MAX, MPI_MIN, MPI_LAND (logical and), etc.

rank 0

4a
rank 1

7a
rank 2

1a
rank 3

2a

b b b b14

root processoperation

MPI Version of “pi” Sample

16

x
x

x

x

x
x

xx

 pi-mpi sample
~endo-t-ac/ppcomp/18/pp-mpi/
 We need to get “total number” of points in

yellow area  Reduction

1. Each process calculates local sum
2. Rank 0 obtains the final sum by MPI_Reduce

Difference with “omp for
reduction” in OpenMP

 Syntaxes are completely different
 Computations are also different
 In OpenMP

 Do “s += a[i]” in parallel for loop with reduction(+:s)

 In MPI
 If each input is an array, output is also an array
 Operations are done for each index

17

4 7 2 3 0 1 5 6 5 33

4 7 2 3 0 1 5 6 5 12 13 8

18

MPI_Allreduce
 Allreduce = Reduction + Bcast

MPI_Allreduce(&a, &b, 1, MPI_INT, MPI_SUM,
MPI_COMM_WORLD);

 The sum is put on b on all processes

rank 0

4a
rank 1

7a
rank 2

1a
rank 3

2a

b b b b14 14 14 14

MPI_Barrier
 Barrier synchronization: processes are

stopped until all processes reach the point
MPI_Barrier(MPI_COMM_WORLD);

 Used in sample programs, to measure execution time
more precisely

19

Other Collective
Communications
 MPI_Scatter

 An array on a process is “scattered” to all processes
 cf) Process 0 has an array of length 10,000. There are 10

processes. The array is divided to parts of length 1,000 and
scatterd

 MPI_Gather
 Data on all processes are “gathered” to the root process.
 Contrary to MPI_Scatter

 MPI_Allgather
 Similar to MPI_Gather. Gathered data are put on all processes
：

20

Assignments in MPI Part
(Abstract)
Choose one of [M1]—[M3], and submit a report
Due date: May 28 (Monday)

[M1] Parallelize “diffusion” sample program by MPI.
[M2] Improve mm-mpi sample in order to reduce memory

consumption.
[M3] (Freestyle) Parallelize any program by MPI.

For more detail, please see No. 7 slides or OCW-i.

21

22

Next Class
 MPI (4)
 Discussion on performance of MPI programs

	2018�Practical Parallel Computing�(実践的並列コンピューティング)�No. 9
	“mm” sample: Matrix Multiply�(Revisited, related to [M2])
	Programming Data Distribution�(for mm-mpi sample)
	Discussion on Considering Data Distribution
	Reconsidering Data Distribution of mm-mpi
	Reducing Memory Consumption�Further
	Data Distribution with Less Memory Consumption
	Actual Data Distribution of Memory Reduced Version
	Improvements of Memory Reduced Version
	Peer-to-peer Communications
	Collective Communications�（Group Communications)
	One of Collective Communications: Broadcast by MPI_Bcast
	MPI_Bcast Can Be Used in�Memory Reduced MM
	“Do I Really Need to Learn New Functions?”
	Reduction by MPI_Reduce
	MPI Version of “pi” Sample
	Difference with “omp for reduction” in OpenMP
	MPI_Allreduce
	MPI_Barrier
	Other Collective Communications
	Assignments in MPI Part�(Abstract)
	Next Class

