The Hopf Differential

Complexification of vector spaces. Let V be an n-dimensional real vector space. By extending the coefficients to complex numbers, we obtain an n-dimensional complex vector space $V^{\mathbb{C}}$, called the complexification of V. More precisely, take a basis $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\}$ of V. Then $V^{\mathbb{C}}$ is the complex vector space generated by $\left\{\boldsymbol{a}_{j}\right\}$:

$$
\begin{align*}
V^{\mathbb{C}} & =\left\{x_{1} \boldsymbol{a}_{1}+\cdots+x_{n} \boldsymbol{a}_{n} \mid x_{j} \in \mathbb{C} \quad(j=1, \ldots, n)\right\} \\
& =\operatorname{Span}_{\mathbb{C}}\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right\} . \tag{4.1}
\end{align*}
$$

This expression does not depend on the choice of $\left\{\boldsymbol{a}_{j}\right\}$. In fact, let $\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right\}$ be another basis of V and $A \in \operatorname{GL}(n, \mathbb{R})$ the change of bases $\left\{\boldsymbol{a}_{j}\right\}$ and $\left\{\boldsymbol{b}_{j}\right\}$:

$$
\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right)=\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right) A
$$

Since

$$
\begin{aligned}
\boldsymbol{x}: & =x_{1} \boldsymbol{a}_{1}+\cdots+x_{n} \boldsymbol{a}_{n}=\left(\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \\
& =\left(\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right)\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \quad\left(\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right):=A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)\right),
\end{aligned}
$$

we have that $\operatorname{Span}_{\mathbb{C}}\left\{\boldsymbol{b}_{j}\right\}=\operatorname{Span}_{\mathbb{C}}\left\{\boldsymbol{a}_{j}\right\}$.
03. July, 2018.

The dual vector space W^{*} of a real (complex) vector space W is the set of linear functions on W :

$$
W^{*}:=\{\sigma: W \rightarrow \mathbb{R} \mid \mathbb{R} \text {-linear }\} \quad \text { (resp. }\{\sigma: W \rightarrow \mathbb{C} \mid \mathbb{C} \text {-linear }\} \text {). }
$$

It is easy to see that $\left(W^{\mathbb{C}}\right)^{*}=\left(W^{*}\right)^{\mathbb{C}}$.
The complexification $V^{\mathbb{C}}$ is also interpreted as a $2 n$-dimensional real vector space spanned by

$$
\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n} ; \quad \mathrm{i} \boldsymbol{a}_{1}, \ldots, \mathrm{i} \boldsymbol{a}_{n}
$$

where $\mathrm{i}=\sqrt{-1}$. Under such a situation, V is an n-dimensional subspace of $V^{\mathbb{C}}$ as a real vector space.

Example 4.1. The complexification of \mathbb{R}^{n} is \mathbb{C}^{n}. In fact, $\mathbb{C}^{n}=$ $\operatorname{Span}_{\mathbb{C}}\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$, where $\left\{\boldsymbol{e}_{j}\right\}$ is the canonical basis of \mathbb{R}^{n}.

2-dimensional case. We assume that V is a real vector space of dimension 2 , and take a basis $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right\}$. Then the dual basis $\left\{\alpha_{1}, \alpha_{2}\right\}$ of V^{*} is defined by

$$
\alpha_{j}\left(\boldsymbol{a}_{k}\right)=\delta_{j k}= \begin{cases}1 & (j=k), \\ 0 & (j \neq k)\end{cases}
$$

and

$$
\left(V^{*}\right)^{\mathbb{C}}=\operatorname{Span}_{\mathbb{C}}\left(\alpha_{1}, \alpha_{2}\right)=\operatorname{Span}_{\mathbb{C}}(\beta, \bar{\beta}),
$$

where

$$
\beta:=\alpha_{1}+\mathrm{i} \alpha_{2}, \quad \bar{\beta}:=\alpha_{1}-\mathrm{i} \alpha_{2} .
$$

We set

$$
\boldsymbol{b}:=\frac{1}{2}\left(\boldsymbol{a}_{1}-\mathrm{i} \boldsymbol{a}_{2}\right), \quad \overline{\boldsymbol{b}}:=\frac{1}{2}\left(\boldsymbol{a}_{1}+\mathrm{i} \boldsymbol{a}_{2}\right) .
$$

Then $\{\boldsymbol{b}, \overline{\boldsymbol{b}}\}$ is a basis of $V^{\mathbb{C}}$ whose dual basis is $\{\beta, \bar{\beta}\}$.
Then a real vector $x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2} \in V$ is identified with

$$
\xi \boldsymbol{b}+\bar{\xi} \overline{\boldsymbol{b}}=2 \operatorname{Re}(\xi \boldsymbol{b}),
$$

where $\xi:=x_{1}+\mathrm{i} x_{2}$ and $\bar{\xi}$ is its complex conjugate.
Compexified tangent spaces of Riemann surfaces. Let S be a Riemann surface, that is, a complex 1-manifold, and take a local complex coordinate neighborhood $(U ; z)$ around $p \in S$ Then $(u, v)(z=u+\mathrm{i} v)$ is a real coordinate system on $U \subset S$.

The tangent space $T_{x} S$ is a real vector space spanned by $\left\{(\partial / \partial u)_{x},(\partial / \partial v)_{x}\right\}$, and $\left\{(d u)_{x},(d v)_{x}\right\}$ is the dual basis of it. Then, as seen in the previous paragraph, the complexification of $\left(T_{x} S\right)^{\mathbb{C}}$ and its dual $\left(T_{x}^{*} S\right)^{\mathbb{C}}$ is obtained as

$$
\begin{align*}
\left(T_{x} S\right)^{\mathbb{C}} & =\operatorname{Span}_{\mathbb{C}}\left\{\left(\frac{\partial}{\partial z}\right)_{x},\left(\frac{\partial}{\partial \bar{z}}\right)_{x}\right\} \tag{4.2}\\
\frac{\partial}{\partial z} & :=\frac{1}{2}\left(\frac{\partial}{\partial u}-\mathrm{i} \frac{\partial}{\partial v}\right), \frac{\partial}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial}{\partial u}+\mathrm{i} \frac{\partial}{\partial v}\right), \\
\left(T_{x}^{*} S\right)^{\mathbb{C}} & =\operatorname{Span}_{\mathbb{C}}\left\{(d z)_{x},(d \bar{z})_{x}\right\} \tag{4.3}\\
d z & :=d u+\mathrm{i} d v, \quad d \bar{z}:=d u-\mathrm{i} d v .
\end{align*}
$$

In particular $\left\{(d z)_{x},(d \bar{z})_{x}\right\}$ is the dual basis of $\left\{(\partial / \partial z)_{x},(\partial / \partial \bar{z})_{x}\right\}$.
Lemma 4.2. Let $(U ; z=u+\mathrm{i} v)$ be a complex coordinate neighborhood of a Riemann surface S. Then a function $f: U \rightarrow \mathbb{C}$ is holomorphic if and only if

$$
\frac{\partial f}{\partial \bar{z}}\left(=\frac{1}{2}\left(\frac{\partial f}{\partial u}-\mathrm{i} \frac{\partial f}{\partial v}\right)\right)=0
$$

Proof. We write $f(u, v)=\xi(u, v)+\mathrm{i} \eta(u, v)$, where ξ and η are real-valued function on U. Then

$$
\begin{aligned}
2 \frac{\partial f}{\partial \bar{z}} & =\frac{\partial(\xi+\mathrm{i} \eta)}{\partial u}-\mathrm{i} \frac{\partial(\xi+\mathrm{i} \eta)}{\partial v} \\
& =\left(\frac{\partial \xi}{\partial u}-\frac{\partial \eta}{\partial v}\right)+\mathrm{i}\left(\frac{\partial \eta}{\partial u}+\frac{\partial \xi}{\partial v}\right)
\end{aligned}
$$

which vanishes if and only if the map $(u, v) \mapsto(\xi, \eta)$ satisfies the Cauchy-Riemann equation.

Definition 4.3.

$$
\begin{aligned}
& \left(T_{x} S\right)^{(1,0)}:=\operatorname{Span}_{\mathbb{C}}\left\{(d z)_{x}\right\} \subset\left(T_{x}^{*} S\right)^{\mathbb{C}}, \\
& \left(T_{x} S\right)^{(0,1)}:=\operatorname{Span}_{\mathbb{C}}\left\{(d \bar{z})_{x}\right\} \subset\left(T_{x}^{*} S\right)^{\mathbb{C}} .
\end{aligned}
$$

Lemma 4.4. $\left(T_{x}^{*} S\right)^{\mathbb{C}}=\left(T_{x}^{*} S\right)^{(1,0)} \oplus\left(T_{x}^{*} S\right)^{(0,1)}$. Moreover such a decomposition does not depend on a choice of complex coordinate systems.

Proof. Since $(d z)_{x}$ and $(d \bar{z})_{x}$ span $\left(T_{x}^{*}(S)\right)^{\mathbb{C}}$, the first part is obtained. Let w be another complex coordinate. Then one can easily show that

$$
d w=\frac{\partial w}{\partial z} d z+\frac{\partial w}{\partial \bar{z}} d \bar{z}, \quad d \bar{w}=\frac{\partial \bar{w}}{\partial z} d z+\frac{\partial \bar{w}}{\partial \bar{z}} d \bar{z}
$$

Since the coordinate change $z \mapsto w$ is holomorphic, Lemma 4.2 yields that

$$
\frac{\partial w}{\partial \bar{z}}=0, \quad \frac{\partial \bar{w}}{\partial z}=\frac{\overline{\partial w}}{\partial \bar{z}}=0
$$

Hence, by definition of complex derivation,

$$
d w=\frac{d w}{d z} d z, \quad d \bar{w}=\frac{\overline{d w}}{d z} d \bar{z}
$$

hold. Then the second part of the conclusion follows.

Symmetric 2-differentials on Riemann surfaces. A symmetric 2 -form on a real vector space V is a bilinear form

$$
\sigma: V \times V \longrightarrow \mathbb{R}
$$

such that $\sigma(\boldsymbol{x}, \boldsymbol{y})=\sigma(\boldsymbol{y}, \boldsymbol{x})$ holds for all $\boldsymbol{x}, \boldsymbol{y} \in V$. A symmetric 2 -tensor or a symmetric 2 -differential on a smooth manifold S is a correspondence

$$
\sigma: S \ni x \longmapsto \text { a symmetric 2-form } \sigma_{x} \text { on } T_{x} S
$$

such that $\sigma(X, Y): S \rightarrow \mathbb{R}$ is smooth for each smooth vector fields X and Y on S. Taking a local coordinate system (u, v) around p, a symmetric 2 -tensor σ is expressed as

$$
\begin{aligned}
& \text { (4.4) } \quad \sigma=s_{11} d u^{2}+2 s_{12} d u d v+s_{22} d v^{2} \\
& \binom{s_{11}:=\sigma(\partial / \partial u, \partial / \partial u), \quad s_{22}:=\sigma(\partial / \partial v, \partial / \partial v),}{s_{12}=s_{21}:=\sigma(\partial / \partial u, \partial / \partial v)} .
\end{aligned}
$$

Example 4.5 (Surfaces in the Euclidean space). Let $p: S \rightarrow \mathbb{R}^{3}$ be an immersion of a Riemann surface S into \mathbb{R}^{3}. Since S is
orientable, ${ }^{9}$ there exists a (globally defined) unit normal vector field ν which is considered as a map $\nu: S \rightarrow S^{2} \subset \mathbb{R}^{3}$, called the Gauss map.

The first fundamental form $d s^{2}$ and the second fundamental form II are defined as

$$
d s^{2}(\boldsymbol{v}, \boldsymbol{w}):=d p(\boldsymbol{v}) \cdot d p(\boldsymbol{w}) \text { and } I I(\boldsymbol{v}, \boldsymbol{w}):=-d p(\boldsymbol{v}) \cdot d \nu(\boldsymbol{w}),
$$

respectively, for $\boldsymbol{v}, \boldsymbol{w} \in T_{x} S(x \in S)$. Then both $d s^{2}$ and $I I$ are symmetric 2-differentials on S.

Since $d p(\partial / \partial u)=p_{u}, \ldots$, and

$$
\begin{aligned}
p_{u} \cdot \nu_{u} & =\left(p_{u} \cdot \nu\right)_{u}-p_{u u} \cdot \nu \\
p_{u} \cdot \nu_{v} & =p_{v} \cdot \nu_{u}=-p_{u v} \cdot \nu, \quad p_{v} \cdot \nu_{v}=-p_{v v} \cdot \nu
\end{aligned}
$$

the definitions of the fundamental forms here coincide with those as (2.11) in Section 2.

Let $(U ; z=u+\mathrm{i} v)$ be a complex chart of a Riemann surface S. By virtue of (4.3), one can rewrite (4.4) as

$$
\begin{equation*}
\sigma=\tilde{s}_{20} d z^{2}+2 \tilde{s}_{11} d z d \bar{z}+\tilde{s}_{02} d \bar{z}^{2} \tag{4.5}
\end{equation*}
$$

where ${ }^{10}$

$$
\begin{aligned}
\tilde{s}_{20} & =\frac{s_{11}-s_{22}-2 \mathrm{i} s_{12}}{4}, \\
\tilde{s}_{02} & =\frac{s_{11}-s_{22}+2 \mathrm{i} s_{12}}{4}, \quad \tilde{s}_{11}=\frac{s_{11}+s_{22}}{4} .
\end{aligned}
$$

${ }^{9}$ A Riemann surface (more generally, a complex manifold) is necessarily orientable. In fact, a holomorphic coordinate change $z=u+\mathrm{i} v \mapsto w=\xi+\mathrm{i} \eta$ has positive Jacobian because of the Cauchy-Riemann equation.
${ }^{10}$ Although the form (4.5) might be written as $\sigma^{\mathbb{C}}$ because it is a complexification of the original σ, we do not distinguish them in this notebook.

Definition 4.6. Let σ be a symmetric 2-differential as in (4.5). Then we set

$$
\sigma^{(2,0)}:=\tilde{\sigma}_{20} d z^{2}, \sigma^{(1,1)}:=2 \tilde{\sigma}_{11} d z d \bar{z}, \sigma^{(0,2)}:=2 \tilde{\sigma}_{02} d \bar{z}^{2}
$$

and call them the $(2,0)$-part, $(1,1)$-part, and $(0,2)$-part of σ, respectively.

Similar to Lemma 4.4,
Lemma 4.7. The $(2,0)$-part, $(1,1)$-part and (0,2$)$-part of symmetric 2-differnetials are independent on choice of complex coordinates.

Hopf differentials.

Definition 4.8. An immersion $p: S \rightarrow \mathbb{R}^{3}$ is said to be conformal if each complex coordinate $z=u+\mathrm{i} v$ corresponds to isothermal coordinate system (u, v).

In the situation of Definition 4.8, the first fundamental form $d s^{2}$ is written as

$$
\begin{equation*}
d s^{2}=e^{2 \sigma}\left(d u^{2}+d v^{2}\right)=e^{2 \sigma} d z d \bar{z} \tag{4.6}
\end{equation*}
$$

Thus we have
Lemma 4.9. An immersion $p: S \rightarrow \mathbb{R}^{3}$ of a Riemann surface S is conformal if and only if the first fundamental form has no both $(2,0)$-part and (0,2)-part.

Definition 4.10. Let $p: S \rightarrow \mathbb{R}^{3}$ be a conformal immersion of a Riemann surface of S. The $(2,0)$-part Q of the second fundamental form is called the Hopf differential.

Lemma 4.11. If the first and second fundamental forms are in the form

$$
\begin{align*}
d s^{2} & =e^{2 \sigma}\left(d u^{2}+d v^{2}\right)=e^{2 \sigma} d z d \bar{z} \\
I I & =L d u^{2}+2 M d u d v+N d v^{2} \tag{4.7}
\end{align*}
$$

in the complex coordinate $z=u+\mathrm{i} v$, the Hopf differential Q and the mean curvature H are expressed as
(4.8) $\quad Q=\frac{1}{4}((L-N)-2 \mathrm{i} M) d z^{2}, \quad H=\frac{e^{-2 \sigma}}{2}(L+N)$.

Proof. The equation ?? yields the expression of the Hopf differential. Since the representation matrix of the first fundamental form is $e^{2 \sigma} \mathrm{id}$, then the coefficients of the Weingarten matrix (cf. (??) in Section 2) are $e^{-2 \sigma}$ times of L, M and N. Since the $2 H$ is the trace of the Weingarten matrix, the expression of the mean curvature holds.
Definition 4.12. Let $p: S \rightarrow \mathbb{R}^{3}$ be an immersion of a 2manifold S. A point $x \in S$ is called an umbilic point if the first fundamental form $d s^{2}$ and the second fundamental form $I I$ are proportional at the point p. If all points of S are umbilic points, p is called totally umbilic.
Proposition 4.13 (cf. $\S 7$ in [3-1]). The image of a totally umbilic immersion is a part of a plane or a round sphere.

Proof. Since the first and second fundamental forms are proportional, the Weingarten matrix (??) is a scalar multiplication of id: $A=\lambda$ id on a coordinate neighborhood (u, v). Then the derivatives of the unit normal vector field satisfy

$$
\nu_{u}=-\lambda p_{u}, \quad \nu_{v}=-\lambda p_{v} .
$$

Differentiating these, we have

$$
\begin{aligned}
\nu_{u v} & =-\lambda_{v} p_{u}+\lambda p_{u v}, \\
\nu_{v u} & =-\lambda_{u} p_{v}+\lambda p_{v u} .
\end{aligned}
$$

This implies $d \lambda=0$ on a coordinate neighborhood, and thus λ must be constant. When $\lambda=0, \nu$ is constant vector, and then the image of p is a part of the plane. If $\lambda \neq 0, p+\nu / \lambda$ is constant. This means that the image lies on a sphere of radius $1 /|\lambda|$.

The Gauss and Codazzi equations.

Theorem 4.14. Let $p: S \rightarrow \mathbb{R}^{3}$ be a conformal immersion of a Riemann surface S, and let $d s^{2}, H$ and Q be the first fundamental form, the mean curvature and the Hopf differential, respectively. Take a complex coordinate $z=u+\mathrm{i} v$ of S, and write

$$
d s^{2}=e^{2 \sigma} d z d \bar{z}, \quad Q=q d z^{2}
$$

Then the Gauss equation (3.14) and the Codazzi equations (3.15) are equivalent to
(4.9) $\frac{\partial^{2} \sigma}{\partial z \partial \bar{z}}+e^{-2 \sigma} q \bar{q}+\frac{1}{4} e^{2 \sigma} H^{2}=0, \quad \frac{\partial q}{\partial \bar{z}}=\frac{e^{2 \sigma}}{4} \frac{\partial H}{\partial z}$,
respectively.
Proof. By (4.8),

$$
\begin{aligned}
q \bar{q} & =\frac{1}{16}\left((L-N)^{2}+4 M^{2}\right)=\frac{1}{16}\left((L+N)^{2}-4\left(L N-M^{2}\right)\right) \\
& =\frac{1}{4}\left(e^{4 \sigma} H^{2}-\left(L N-M^{2}\right)\right) .
\end{aligned}
$$

Since

$$
\frac{\partial^{2}}{\partial z \partial \bar{z}}=\frac{1}{4}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right)
$$

the Gauss equation (3.14) is equivalent to the first equation of (4.9). The second equation follows from (3.15).

Corollary 4.15. Let $p: S \rightarrow \mathbb{R}^{3}$ be a conformal immersion of a Riemann surface S with constant mean curvature. Then the Hopf differential $Q=q d z^{2}$ is holomorphic, that is, q is a holomorphic function in z, where z is an arbitrary complex coordinate on S.

Proof. When $d H=0$, the second equation of (4.9) implies $q_{\bar{z}}=$ 0.

Since zeros of holomorhpic function are isolated unless the function is identically zero, we have

Corollary 4.16. An umbilic point of a constant mean curvature surface is isolated unless it is totally umbilic.

References

［4－1］梅原雅顕，山田光太郎，曲線と曲面（改訂版），裳華房，2014．
［4－2］Masaaki Umehara and Kotaro Yamada，Differential Geometry of Curves and Surfaces，（trasl．by Wayne Rossman），World Scientific 2017.

Exercises
4－1 ${ }^{\mathrm{H}}$ Let S be a Riemann surface，and let

$$
p: S \longrightarrow \mathbb{R}^{3}
$$

be a conformal immersion of constant mean curvature without umbilic points．Then for each $x \in D$ ，there exists a complex coordinate z such that

$$
d s^{2}=e^{2 \sigma} d z d \bar{z}, \quad Q=d z^{2} .
$$

