The Hopf Differential

Complexification of vector spaces. Let V' be an n-dimen-
sional real vector space. By extending the coefficients to com-
plex numbers, we obtain an n-dimensional complex vector space
VC, called the complexification of V. More precisely, take a ba-
sis {@1,...,a,} of V. Then VC is the complex vector space
generated by {a;}:

VC={1‘1G1+"'+$nan|l‘jEC (j=1,...,n)}

4.1
(41) = Spanc{ay,...,a,}.

This expression does not depend on the choice of {a;}. In fact,
let {b1,...,b,} be another basis of V and A € GL(n,R) the
change of bases {a;} and {b;}:

(@1, an) = (br,....ba) Al

Since
1
r:=z1a1+ -+ 2pa, = (a1,...,a,) | :
Ln
Y1 Y1 1
= (b1,...,by) | : ]l =AL ,
Yn Yn Tn

we have that Spanc{b;} = Spanc{a;}.
03. July, 2018.
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The dual vector space W* of a real (complex) vector space
W is the set of linear functions on W:

W*:={o: W — R|R-lincar} (resp.{o: W — C|C-linear}).

It is easy to see that (W®)* = (W*)C.
The complexification V® is also interpreted as a 2n-dimensional
real vector space spanned by

ai,...,a,; iai,...,ia,,

where i = v/—1. Under such a situation, V is an n-dimensional
subspace of VC as a real vector space.

Example 4.1. The complexification of R™ is C". In fact, C* =
Spanc{ei,...,e,}, where {e;} is the canonical basis of R™.

2-dimensional case. We assume that V' is a real vector space
of dimension 2, and take a basis {a1,as}. Then the dual basis
{a1, a2} of V* is defined by

e =tn={y (20
and
(V*)® = Spanc (o, az) = Spanc(8B, B),
where B
8= ay + ias, 8= ay — ias.
We set

1 . = 1 .
b= i(al—lag), b:= §(a1 +ias).



39 (20180703) MTH.B402; Sect. 4

Then {b, b} is a basis of V€ whose dual basis is {3, 5}.
Then a real vector z1a1 + x2a2 € V is identified with

£b+ &b = 2 Re(ED),

where ¢ := x, + iz and € is its complex conjugate.

Compexified tangent spaces of Riemann surfaces. Let
S be a Riemann surface, that is, a complex 1-manifold, and take
a local complex coordinate neighborhood (U;z) around p € S.
Then (u,v) (# = u +1iv) is a real coordinate system on U C S.

The tangent space TS is a real vector space spanned by
{(0/0u) 4, (0/0v),}, and {(du),, (dv),} is the dual basis of it.
Then, as seen in the previous paragraph, the complexification
of (T,,5)¢ and its dual (7;*S)Cis obtained as

0 0

Cc _ . _
42 (&5 ‘&mw{<&);<%>J
o _1(9 9\ 9 _1
9z 2\ou ‘ov) 9z 2

(4.3)  (T35)° = Span ¢ {(d2)., (d2)..}
dz :=du+idv, dz:=du — idv.

In particular {(dz), (dZ), } is the dual basis of {(0/0z), (0/0%Z) .}

Lemma 4.2. Let (U;z = u+iv) be a complex coordinate neigh-
borhood of a Riemann surface S. Then a function f: U — C is
holomorphic if and only if

1)
0z \ 2\9du v e
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Proof. We write f(u,v) = &(u,v) + in(u,v), where £ and 7 are
real-valued function on U. Then

of _ o(€+in) 9 +in)

9z Ou ov

(96 On [ On  0¢

B <8u a 81}) +1(8u+8v ’
which vanishes if and only if the map (u,v) — (§,n) satisfies
the Cauchy-Riemann equation. O

2

Definition 4.3.

(T$S’)(1’O) := Span ¢{(dz).} C (T 9)%,
(T,S) Y := Span ¢{(d2),} C (T3 9)°C.

Lemma 4.4. (T*S)¢ = (T;8)19 & (T 9)OV. Moreover such
a decomposition does not depend on a choice of complex coordi-
nate systems.

Proof. Since (dz), and (dz), span (T(S))C, the first part is
obtained. Let w be another complex coordinate. Then one can
easily show that

ow ow ,_ _ 0w ow ,_

Since the coordinate change z — w is holomorphic, Lemma 4.2
yields that L
ow ow  Ow

-0 5T 0



41 (20180703) MTH.B402; Sect. 4

Hence, by definition of complex derivation,

dw _ dw
dwzadz, dw—adz
hold. Then the second part of the conclusion follows. O

Symmetric 2-differentials on Riemann surfaces. A sym-
metric 2-form on a real vector space V is a bilinear form

c:VxV—R

such that o(x,y) = o(y, x) holds for all &, y € V. A symmetric
2-tensor or a symmetric 2-differential on a smooth manifold S
is a correspondence

0: S 5 x — a symmetric 2-form o, on 7,5

such that o(X,Y): S — R is smooth for each smooth vector
fields X and Y on S. Taking a local coordinate system (u,v)
around p, a symmetric 2-tensor o is expressed as

(44) o=s11 du® 4 2515 du dv + S99 dv>

s11 := 0 (0/0u,d/0u), S99 1= 0 (0/0v,0/0v),
S12 = S21 = a(é)/@u,a/av) '

Example 4.5 (Surfaces in the Euclidean space). Let p: S — R3
be an immersion of a Riemann surface S into R3. Since S is
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orientable,? there exists a (globally defined) unit normal vector
field v which is considered as a map v: S — 5% C R3, called the
Gauss map.

The first fundamental form ds? and the second fundamental
form II are defined as

ds*(v,w) := dp(v) - dp(w) and II(v,w) := —dp(v) - dv(w),
respectively, for v, w € TS (x € S). Then both ds? and II are
symmetric 2-differentials on S.

Since dp(9/0u) = py, ..., and
Pu " Vuy = (pu 'V)ufpuu'ya
Py Vy =Py Vy = —Puv Vs Py Vy = —Poyv "V,

the definitions of the fundamental forms here coincide with those
as (2.11) in Section 2.

Let (U;z = u+1iv) be a complex chart of a Riemann surface
S. By virtue of (4.3), one can rewrite (4.4) as

(45) g = 520 d22 + 2§11 dzdz + §02d22,
where!?
_ 811 — S22 — 2812
S20 = 4 ’
5o Su—sndt 2is1o 5. Sutsm
0= —F— 1n=—F-"
0 4 ) 4

9 A Riemann surface (more generally, a complex manifold) is necessarily
orientable. In fact, a holomorphic coordinate change z = u+iv — w = £+in
has positive Jacobian because of the Cauchy-Riemann equation.

10Although the form (4.5) might be written as o© because it is a com-
plexification of the original o, we do not distinguish them in this notebook.
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Definition 4.6. Let o be a symmetric 2-differential as in (4.5).
Then we set

(20 .= 520d22, A 2611dz dz, (02 .= 2502d22,

and call them the (2,0)-part, (1,1)-part, and (0, 2)-part of o,
respectively.

Similar to Lemma 4.4,
Lemma 4.7. The (2,0)-part, (1,1)-part and (0,2)-part of sym-

metric 2-differnetials are independent on choice of complex co-
ordinates.

Hopf differentials.

Definition 4.8. An immersion p: S — R? is said to be con-
formal if each complex coordinate z = u + iv corresponds to
isothermal coordinate system (u,v).

In the situation of Definition 4.8, the first fundamental form
ds? is written as

(4.6) ds® = €27 (du® + dv?) = €*° dz dz.
Thus we have

Lemma 4.9. An immersion p: S — R3 of a Riemann surface
S is conformal if and only if the first fundamental form has no
both (2,0)-part and (0, 2)-part.
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Definition 4.10. Let p: S — R? be a conformal immersion
of a Riemann surface of S. The (2,0)-part @ of the second
fundamental form is called the Hopf differential.

Lemma 4.11. If the first and second fundamental forms are in
the form

ds* = €27 (du® + dv?) = €*° dz dz,

(4.7) ) )
II = Ldu®+2M dudv + N dv

in the complex coordinate z = u + iv, the Hopf differential Q
and the mean curvature H are expressed as

6—20

2

(4.8) Q:i((L—N)—ziM)dz% H = (L+N).

Proof. The equation ?? yields the expression of the Hopf differ-
ential. Since the representation matrix of the first fundamental
form is €27 id, then the coefficients of the Weingarten matrix
(cf. (??) in Section 2) are €27 times of L, M and N. Since the
2H is the trace of the Weingarten matrix, the expression of the
mean curvature holds. O

Definition 4.12. Let p: S — R3 be an immersion of a 2-
manifold S. A point z € S is called an umbilic point if the
first fundamental form ds? and the second fundamental form IT
are proportional at the point p. If all points of S are umbilic
points, p is called totally umbilic.

Proposition 4.13 (cf. §7 in [3-1]). The image of a totally um-
bilic immersion is a part of a plane or a round sphere.
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Proof. Since the first and second fundamental forms are pro-
portional, the Weingarten matrix (??) is a scalar multiplication
of id: A = \id on a coordinate neighborhood (u,v). Then the
derivatives of the unit normal vector field satisfy

Uy = 7Apu7 Uy = 7>‘pv~
Differentiating these, we have

Vo = —ApDu + APuvs
Vpu = —AuPov + ADyu-

This implies d\ = 0 on a coordinate neighborhood, and thus
A must be constant. When A\ = 0, v is constant vector, and
then the image of p is a part of the plane. If A £ 0, p+ v/ is
constant. This means that the image lies on a sphere of radius
1/IAl. O

The Gauss and Codazzi equations.

Theorem 4.14. Let p: S — R? be a conformal immersion of
a Riemann surface S, and let ds*, H and Q be the first fun-
damental form, the mean curvature and the Hopf differential,
respectively. Take a complex coordinate z = u + iv of S, and
write
ds®> =e* dzdz, Q= qdz>.

Then the Gauss equation (3.14) and the Codazzi equations (3.15)
are equivalent to

0%c Cop - 1

dq €* 0H
4. —e*H? = =
(49)  gogz T Taat e 0,

0z 4 0z’
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respectively.

Proof. By (4.8),

(L—=N)*+4M?) = % ((L+ N)* —4(LN — M?))

® 1

020z 4 \ou2  ow?)’

the Gauss equation (3.14) is equivalent to the first equation of
(4.9). The second equation follows from (3.15). O

Corollary 4.15. Let p: S — R3 be a conformal immersion
of a Riemann surface S with constant mean curvature. Then
the Hopf differential Q = qdz? is holomorphic, that is, q is
a holomorphic function in z, where z is an arbitrary complex
coordinate on S.

Proof. When dH = 0, the second equation of (4.9) implies ¢z =
0. O

Since zeros of holomorhpic function are isolated unless the
function is identically zero, we have

Corollary 4.16. An umbilic point of a constant mean curvature
surface is isolated unless it is totally umbilic.
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Exercises
4-1" Let S be a Riemann surface, and let
p: S — R?

be a conformal immersion of constant mean curvature
without umbilic points. Then for each z € D, there exists
a complex coordinate z such that

ds® = * dzdz, Q = dz>.



