
Isothermal parameters

A Review of Complex Analysis. Let C be the complex
plane. A C1-function7f : C ∋ D ∈ z 7→ w = f(z) ∈ C defined
on a domain D is said to be holomorphic if the derivative

f ′(z) := lim
h→0

f(z + h) − f(z)

h

exists for all z ∈ D.

Fact 3.1 (The Cauchy-Riemann equation). A function f : C ∋
D → C is holomorphic if and only if

(3.1)
∂u

∂ξ
=

∂v

∂η
and

∂u

∂η
= −∂v

∂ξ

holds on D, where w = f(z), z = ξ + iη, w = u+ iv (i =
√

−1).

For functions of complex variable z = ξ + iη, we set

(3.2)
∂

∂z
:=

1

2

(
∂

∂ξ
− i

∂

∂η

)
,

∂

∂z̄
:=

1

2

(
∂

∂ξ
+ i

∂

∂η

)
.

Corollary 3.2. For a complex function f , (3.1) is equivalent to

(3.3)
∂f

∂z̄
= 0.

Proof. Setting w = f(z) = u + iv and z = ξ + iη. Then the real
(resp. imaginary) part of the left-hand side of (3.3) coincides
with the first (resp. second) equation of (3.1).

26. June, 2018. Revised: 03. July, 2018
7Of class C1 as a map from D ⊂ R2 to R2.
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Isothermal Coordinates.

Definition 3.3. Let f : M2 → R3 be an immersion of 2-manifold,
and ds2 its first fundamental form. A local coordinate chart(
U ; (u, v)

)
of M2 is called an isothermal coordinate system or a

conformal coordinate system if ds2 is written in the form8

ds2 = e2σ(du2 + dv2), σ = σ(u, v) ∈ C∞(U).

Example 3.4. Let γ(u) = (x(u), z(u)) = (a cosh u
a , u), that is, γ

is the graph x = a cosh z
a on the xz-plane, called the catenary.

We call the surface of revolution generated by γ(u) the catenoid,
which is parametrized as

p(u, v) =
(
x(u) cos v, x(u) sin v, z(u)

)
,

This parametrization of the catenoid is isothermal when a = 1.
In fact, the first fundamental form is expressed as cosh2(u/a)(du2+
a2dv2).

Definition 3.5. Two charts
(
Uj ; (uj , vj)

)
(j = 1, 2) of a 2-

manifold M2 has the same (resp. opposite) orientation if the Ja-

cobian ∂(u2,v2)
∂(u1,v1)

is positive (resp. negative) on U1∩U2. A manifold

M2 is said to be oriented if there exists an atlas
{(

Uj ; (uj , vj)
)}

such that all charts have the same orientation. A choice of such
an atlas is called an orientation of M2.

8The notion of the isothermal coordinate system can be defined not only
for surfaces but also for Riemannian 2-manifolds, that is, differentiable 2-
manifolds M2 with Riemannian metrics ds2 (the first fundamental forms).
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Proposition 3.6. Let (u, v) be an isothermal coordinate sys-
tem of a surface. Then another coordinate system (ξ, η) is also
isothermal if and only if the parameter change (ξ, η) 7→ (u, v)
satisfy

(3.4)
∂u

∂ξ
= ε

∂v

∂η
,

∂u

∂η
= −ε

∂v

∂ξ
,

where ε = 1 (resp. −1) if (u, v) and (ξ, η) has the same (resp.
the opposite) orientation.

Proof. If we write ds2 = e2σ(du2 + dv2), it holds that

ds2 = e2σ
(
(u2

ξ + v2
ξ ) dξ2 + 2(uξuη + vξvη) dξ dη + (u2

η + v2
η) dη2

)
.

Thus, (ξ, η) is isothermal if and only if

(3.5) u2
ξ + v2

ξ = u2
η + v2

η, uξuη + vξvη = 0.

The second equality yields (uη, vη) = ε(−vξ, uξ) for some func-
tion ε. Substituting this into the first equation of (3.5), we get
ε = ±1. Moreover,

∂(u, v)

∂(ξ, η)
= det

(
uξ uη

vξ vη

)
= det

(
uξ −εvξ

vξ εuξ

)
= ε(u2

ξ + u2
η).

Thus, the conclusion follows.

Corollary 3.7. Let (u, v) is an isothermal coordinate system.
Then a coordinate system (ξ, η) is isothermal and has the same
orientation as (u, v) if and only if the map ξ + iη 7→ u + iv
(i =

√
−1) is holomorphic.
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Proof. Equations (3.4) for ε = +1 are nothing but the Cauchy-
Riemann equations (3.1).

The notion of isothermal coordinate systems are meaningful
not only for immersed surfaces but also for Riemannian mani-
folds. There exist such coordinate systems on a 2-dimensional
Riemannian manifold:

Fact 3.8 (Section 15 in 3-1). Let (M2, ds2) be an arbitrary
Riemannian manifold. Then for each p ∈ M2, there exists an
isothermal chart containing p.

Corollary 3.9. Any oriented Riemannian 2-manifold has a
structure of Riemann surface (i.e., a complex 1-manifold) such
that for each complex coordinate z = u+ iv, (u, v) is an isother-
mal coordinate system for the Riemannian metric.

Proof. Let p ∈ M2 and take a local coordinate chart
(
Up; (x, y)

)

at p which is compatible to the orientation of M2. Then there
exists an isothermal coordinate chart

(
Vp; (up, vp)

)
at p, because

of Fact 3.8. Moreover, replacing (u, v) by (v, u) if necessary, we
can take (u, v) which has the same orientation of (x, y). Thus,
we have an atlas

{(
Vp; (up, vp)

)}
consisting of isothermal coor-

dinate systems. Since each chart is compatible to the orienta-
tion, the coordinate change zp = up + ivp 7→ uq + ivq = zq is
holomorphic. Hence we get a complex atlas

{(
Vp; zp

)}
.

The Gauss and Weingarten formulas. Let p : U → R3 be
a parametrized regular surface defined on a domain U of the uv-
plane. Assume that (u, v) is an isothermal coordinate system,
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and write the first fundamental form ds2 as

(3.6) ds2 := e2σ(du2 + dv2) σ ∈ C∞(U),

that is,

(3.7) pu · pu = pv · pv = e2σ, pu · pv = 0,

where “˙” denotes the canonical inner product of R3. Since

|pu × pv| =
√

(pu · pu)(pv · pv) − (pu · pv)2 = e2σ,

the unit normal vector field ν can be chosen as

(3.8) ν = e−2σ(pu × pv),

where “×” denotes the vector product of R3. Write the second
fundamental form of p as

(3.9) II = Ldu2 + 2M du dv + N dv2,

where

L = puu · ν, M = puv · ν, N = pvv · ν.

Proposition 3.10 (The Gauss formula). Under the situation
above, it holds that

puu = σupu − σvpv + Lν,

puv = σvpu + σupv + Mν,

pvv = −σupu + σvpv + Nν.
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Proof. Since {pu, pv, ν} is a basis of R3 for each (u, v) ∈ U , one
can write

(3.10) puu = apu + bpv + cν,

where a, b, c are smooth functions on U . Here, since ν is a unit
vector perpendicular to both pu and pv, we have

c = puu · ν = L.

On the other hand, by (3.7), we have

e2σa = puu · pu =
1

2
(pu · pu)u =

1

2
(e2σ)u = σue2σ,

e2σb = puu · pv = (pu · pv)u − pu · puv = −1
2 (pu · pu)v = −σve2σ.

Thus the first equality of the conclusion is obtained. The second
and third equality can be obtained in the same manner.

Proposition 3.11 (The Weingarten formula). Under the situ-
ation above, it holds that

νu = −e−2σ(Lpu + Mpv), νv = −e−2σ(Mpu + Npv).

Proof. If we write νu = apu + bpv + cν, we have

e2σa = νu · pu = (ν · pu)u − ν · puu = −L,

e2σb = νu · pv = (ν · pv)u − ν · puv = −M,

c = νu · ν =
1

2
(ν · ν)u,

and the first equality of the conclusion is obtained. The second
equality can be proven in the same manner.
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Gauss Frame. As seen in the proofs of Proposition 3.10 and
3.11, {pu, pv, ν} is a basis of R3 for each (u, v) ∈ U . Regarding
pu, pv and ν as column vectors, we then have a matrix-valued
function

(3.11) F := (pu, pv, ν) : U 7−→ GL(3, R) ⊂ M3(R).

We call such an F the Gauss frame of the surface. The following
theorem is an immediate consequence of Propositions 3.10 and
3.11:

Theorem 3.12. Let p : U → R3 be a regular surface defined on
a domain U in the uv-plane, and denote by ν the unit normal
vector field of it. Assume that (u, v) is an isothermal coordinate
system, and the first and second fundamental forms are written
as

(3.12) ds2 = e2σ(du2 +dv2), II = Ldu2 +2M du dv+N dv2.

Then the Gauss frame F := (pu, pv, ν) satisfies the following
system of linear partial differential equations:

(3.13)
∂F
∂u

= FΩ,
∂F
∂v

= FΛ,

Ω :=




σu σv −e−2σL
−σv σu −e−2σM
L M 0


 ,

Λ :=




σv −σu −e−2σM
σu σv −e−2σN
M N 0


 ,
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Gauss-Codazzi equations. The coefficients Ω and Λ in (3.13)
must satisfy the integrability condition (2.2) in Lemma 2.2.

Lemma 3.13. The matrices Ω and Λ in (3.13) satisfy

Ωv − Λu − ΩΛ + ΛΩ = O

if and only if

(3.14) σuu + σvv + e−2σ(LN − M2) = 0

and

(3.15) Lv−Mu = σv(L+N) and Nu−Mv = σu(L+N).

Proof. A direct computation.

Thus we have

Theorem 3.14 (The Gauss and Codazzi equatoins). Let p : U →
R3 be a regular surface defined on a domain U in the uv-plane,
and denote by ν the unit normal vector field of it. Assume that
(u, v) is an isothermal coordinate system, and the first and sec-
ond fundamental forms are written as (3.12). Then (3.14) and
(3.15) hold.

Remark 3.15. The equations (3.14) and (3.15) are called the
Gauss equation and the Codazzi equations, respectively. The
Gauss equation is often referred as Gauss’ Theorema Egregium.
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Fundamental Theorem for Surfaces. The following is the
special case of the fundamental theorem for surfaces (Theo-
rem 2.13):

Theorem 3.16. Let U ⊂ R2 be a simply connected domain, and
let σ, L, M , N be C∞-functions satisfying (3.14) and (3.15).
Then there exists a parametrization p : U → R3 of regular sur-
face whose fundamental forms are given by (3.12). Moreover,
such a surface is unique up to orientation preserving isometries
of R3.

Proof. By Lemma 3.13, Theorem 2.3 yields that there exists a
matrix-valued function F : U → M3(R) satisfying (3.13) with
the initial condition

(3.16) F(u0, v0) =




eσ(u0,v0) 0 0
0 eσ(u0,v0) 0
0 0 1


 ,

for a fixed point (u0, v0) ∈ U . Let a, b, c be vector-valued
functions such that F = (a, b, c). Since

av = σva + σub + Mc = bu,

the vector-valued 1-form ω := a du + b dv is closed. Then by
Poincaré’s lemma (Theorem 2.6), there exists a vector-valued
function p : U → R3 such that dp = ω:

pu = a, pv = b.

Let
F̂ := (e−σa, e−σb, c).
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Then it holds that

F̂u = F̂Ω̂, F̂v = F̂Λ̂,

Ω̂ :=




0 σv −e−σL
−σv 0 −e−σM
e−σL e−σM 0


 ,

Λ̂ :=




0 −σu −e−σM
σu 0 −e−σN

e−σM e−σN 0




with F̂(u0, v0) = id. Then by Theorem 2.3, F̂ ∈ SO(3) for all
(u, v) ∈ U . This means that

pu · pu = a · a = e2σ, pu · pv = a · b = 0, pv · pv = b · b = e2σ

pu · ν = pv · ν = 0, ν · ν = 1,

where ν := c. Hence the first fundamental form of p is ds2 =
e2σ(du2 + dv2) and ν is the unit normal vector field of p. More-
over, since

puu · ν = au · c = L, puv · ν = M,pvv · ν = N.

Thus, p is the desired immersion.
Next, we prove the uniqueness. Let p̃ be an immersion with

(3.12). Then the Gauss frame F̃ satisfies the equation (3.13) as
well as F . Here, |p̃u(u0, v0)| = eσ(u0,v0), |p̃v(u0, v0)| = eσ(u0,v0),
and p̃u, p̃v, ν̃ are mutually perpendicular. Thus, by a suitable ro-
tation in R3, we may assume F̃(u0, v0) coincides with F(u0, v0)

without loss of generality. Then F̃ = F by the uniqueness part
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of Theorem 2.3, and dp = dp̃ holds. Hence p̃ = p up to additive
constant vector.
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Exercises

3-1H Prove Theorem 3.14.

3-2H Let (x(u), z(u)) be a curve on the xz-plane parametrized
by the arc-length parameter (that is, (ẋ)2 + (ż)2 = 1).
Find an isothermal parameter of the surface of revolution

p(u, v) =
(
x(u) cos v, x(u) sin v, z(u)

)
.


