Isothermal parameters

A Review of Complex Analysis. Let C be the complex
plane. A C'-function”’f: C 3 D € z — w = f(z) € C defined
on a domain D is said to be holomorphic if the derivative

exists for all z € D.

Fact 3.1 (The Cauchy-Riemann equation). A function f: C >
D — C is holomorphic if and only if
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holds on D, where w = f(2), z = &+in, w = u+iv (i = /—-1).

(3.1)

For functions of complex variable z = £ + in, we set
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Corollary 3.2. For a complez function f, (3.1) is equivalent to
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Proof. Setting w = f(z) = u+iv and z = £ +in. Then the real
(resp. imaginary) part of the left-hand side of (3.3) coincides
with the first (resp. second) equation of (3.1). O
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70f class C! as a map from D C R? to R2.

(3.3) 0.
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Isothermal Coordinates.

Definition 3.3. Let f: M? — R? be an immersion of 2-manifold,
and ds? its first fundamental form. A local coordinate chart
(U; (u, v)) of M? is called an isothermal coordinate system or a
conformal coordinate system if ds® is written in the form?®

ds® = €7 (du® + dv?), o =o(u,v) € C(U).

Example 3.4. Let y(u) = (2(u), z(u)) = (acosh %, u), that is, v
is the graph x = acosh Z on the xz-plane, called the catenary.
We call the surface of revolution generated by y(u) the catenoid,
which is parametrized as

p(u,v) = (z(u) cosv, z(u) sinv, z(u)),

This parametrization of the catenoid is isothermal when a = 1.
In fact, the first fundamental form is expressed as cosh?(u/a)(du?+
2 7,2
a*dv?).

Definition 3.5. Two charts (Uj; (u;,v;)) (j = 1,2) of a 2-
manifold M? has the same (resp. opposite) orientation if the Ja-
ggﬁij; is positive (resp. negative) on U;NUs. A manifold
M? is said to be oriented if there exists an atlas { (Uj; (u;,v;)) }
such that all charts have the same orientation. A choice of such
an atlas is called an orientation of M?2.

cobian

8The notion of the isothermal coordinate system can be defined not only
for surfaces but also for Riemannian 2-manifolds, that is, differentiable 2-
manifolds M? with Riemannian metrics ds? (the first fundamental forms).
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Proposition 3.6. Let (u,v) be an isothermal coordinate sys-
tem of a surface. Then another coordinate system (&,7) is also
isothermal if and only if the parameter change (&,1) — (u,v)
satisfy

Ju v ou v
(34) 875—58777, 8777——5875,

where € = 1 (resp. —1) if (u,v) and (§,7n) has the same (resp.
the opposite) orientation.

Proof. If we write ds? = 27 (du?® + dv?), it holds that

ds® = €7 ((ug + vZ) d€® + 2(uguy + vevy) d€ dn + (ufl + ’U,QI) dn?).
Thus, (&,7) is isothermal if and only if

(3.5) ug + v = ug + v, Ugly + Vevy = 0.

The second equality yields (u,, v,) = e(—ve, ug) for some func-
tion €. Substituting this into the first equation of (3.5), we get
€ = +1. Moreover,

O(u, v) <u5 u ) <u§ —61)5) 9 o
= det T) = det =e(uz +u?).
A& ) ve vy v eug (g +p)

Thus, the conclusion follows. O]

Corollary 3.7. Let (u,v) is an isothermal coordinate system.
Then a coordinate system (£,n) is isothermal and has the same
orientation as (u,v) if and only if the map & + in — u + w
(i = /=1) is holomorphic.
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Proof. Equations (3.4) for ¢ = +1 are nothing but the Cauchy-
Riemann equations (3.1). O

The notion of isothermal coordinate systems are meaningful
not only for immersed surfaces but also for Riemannian mani-
folds. There exist such coordinate systems on a 2-dimensional
Riemannian manifold:

Fact 3.8 (Section 15 in 3-1). Let (M?,ds?) be an arbitrary
Riemannian manifold. Then for each p € M?, there exists an
isothermal chart containing p.

Corollary 3.9. Any oriented Riemannian 2-manifold has a
structure of Riemann surface (i.e., a complex 1-manifold) such
that for each complex coordinate z = u+iv, (u,v) is an isother-
mal coordinate system for the Riemannian metric.

Proof. Let p € M? and take a local coordinate chart (Up; (z, y))
at p which is compatible to the orientation of M?2. Then there
exists an isothermal coordinate chart (Vp; (up, vp)) at p, because
of Fact 3.8. Moreover, replacing (u,v) by (v, u) if necessary, we
can take (u,v) which has the same orientation of (x,y). Thus,
we have an atlas {(V}; (up,vp))} consisting of isothermal coor-
dinate systems. Since each chart is compatible to the orienta-
tion, the coordinate change z, = u, + v, = uq + Vg = 24 is
holomorphic. Hence we get a complex atlas {(Vp; zp) } O

The Gauss and Weingarten formulas. Let p: U — R? be
a parametrized regular surface defined on a domain U of the uv-
plane. Assume that (u,v) is an isothermal coordinate system,
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and write the first fundamental form ds? as

(3.6) ds® 1= € (du® + dv?) o€ C™(U),
that is,
(37) Py Pu = Pv - Pv = 6207 DPu P =0,

where “”7 denotes the canonical inner product of R3. Since

|pu X pv‘ = \/(pu 'pu)(pv 'pv) - (pu 'pv)2 = 620;

the unit normal vector field v can be chosen as
(38) V= 6_20(]?“ X pv)a

where “x” denotes the vector product of R3. Write the second
fundamental form of p as

(3.9) IT = Ldu® 4 2M dudv + N dv?,
where
L =puu-v, M = pyy - v, N =py, 1.

Proposition 3.10 (The Gauss formula). Under the situation
above, it holds that

Puuw = OuyPu — OyPy + LV,
Puv =  OyPy + OuPy + Ml/,
Pov

—O0yPu + OvPo + Nv.
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Proof. Since {py,py, v} is a basis of R3 for each (u,v) € U, one
can write

(310) Puu = APy + bpv + cv,

where a, b, ¢ are smooth functions on U. Here, since v is a unit
vector perpendicular to both p, and p,, we have

C=pyy-v=0L.
On the other hand, by (3.7), we have

o 1 1 o o
62 a4 = Pyu * Pu = i(pu pu)u = 5(62 )u = O'u€2 s

e = Puw - Pv = (pu 'pv)u — Pu " Puv = _%(pu 'pu)v = _UU62U'

Thus the first equality of the conclusion is obtained. The second
and third equality can be obtained in the same manner. O

Proposition 3.11 (The Weingarten formula). Under the situ-
ation above, it holds that

vy =—€ 27 (Lpy + Mp,), vy =—e 7 (Mpy, + Np,).
Proof. If we write v, = ap,, + bp, + cv, we have

€ a:Vu'pu:(V'pu)u_l/'puu:_La

eQUb:Vu'p'u:(V'pv)u_y'pUU:_M7
1
C =1y V—§(V l/)u7

and the first equality of the conclusion is obtained. The second
equality can be proven in the same manner. O
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Gauss Frame. As seen in the proofs of Proposition 3.10 and
3.11, {pu,pv, v} is a basis of R3 for each (u,v) € U. Regarding
Pu, Pv and v as column vectors, we then have a matrix-valued
function

(3.11) F := (pu,pv,v): U — GL(3,R) C M3(R).

We call such an F the Gauss frame of the surface. The following

theorem is an immediate consequence of Propositions 3.10 and
3.11:

Theorem 3.12. Let p: U — R3 be a regular surface defined on
a domain U in the uv-plane, and denote by v the unit normal
vector field of it. Assume that (u,v) is an isothermal coordinate
system, and the first and second fundamental forms are written
as

(3.12) ds? = €*?(du® +dv?®), IT = Ldu®+2M dudv+ N dv?.

Then the Gauss frame F := (pu,ps,V) satisfies the following
system of linear partial differential equations:

oOF OF
(3.13) 7 = F{2, % = FA,

Oy 0y —e 2L

N:=\|-0, o0, —e M|,
L M 0
oy —0, —e M

Ai=|oy, o0, —e2N|,
M N 0
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Gauss-Codazzi equations. The coefficients {2 and A in (3.13)
must satisfy the integrability condition (2.2) in Lemma 2.2.

Lemma 3.13. The matrices 2 and A in (3.13) satisfy
2, — Ay — QA+ A2 =0
if and only if
(3.14) Ouu + oo + €27 (LN — M?) =0
and
(3.15) Ly—M, = 0o(L+N)  and  Ny—M, = oy (L+N).

Proof. A direct computation. O

Thus we have

Theorem 3.14 (The Gauss and Codazzi equatoins). Letp: U —
R3 be a reqular surface defined on a domain U in the uv-plane,
and denote by v the unit normal vector field of it. Assume that
(u,v) is an isothermal coordinate system, and the first and sec-
ond fundamental forms are written as (3.12). Then (3.14) and
(3.15) hold.

Remark 3.15. The equations (3.14) and (3.15) are called the
Gauss equation and the Codazzi equations, respectively. The
Gauss equation is often referred as Gauss’ Theorema Egregium.
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Fundamental Theorem for Surfaces. The following is the
special case of the fundamental theorem for surfaces (Theo-
rem 2.13):

Theorem 3.16. Let U C R? be a simply connected domain, and
let o, L, M, N be C*-functions satisfying (3.14) and (3.15).
Then there exists a parametrization p: U — R? of reqular sur-
face whose fundamental forms are given by (3.12). Moreover,
such a surface is unique up to orientation preserving isometries
of R3.

Proof. By Lemma 3.13, Theorem 2.3 yields that there exists a
matrix-valued function F: U — M;3(R) satisfying (3.13) with
the initial condition
eoluown) 0
(3.16) F(ug,vg) = 0 e (uosv0) ,
0 0 1

for a fixed point (ug,v9) € U. Let a, b, ¢ be vector-valued
functions such that F = (a, b, ¢). Since

a, =o,a+o,b+ Mc=b,,

the vector-valued 1-form w := adu + bdv is closed. Then by
Poincaré’s lemma (Theorem 2.6), there exists a vector-valued
function p: U — R? such that dp = w:

Pu = @, p'u:b~

Let
F:= (e %a,e ?b,c).
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Then it holds that

Fo=FO,  F =FA

. 0 Ov —e 7L
=1 —0o, 0 —e M |,
e °L e "M 0
. 0 -0, —e¢ °M

A= ou 0 —e N

e M e °N 0

with F(ug,v9) = id. Then by Theorem 2.3, F € SO(3) for all
(u,v) € U. This means that
pu'pu:a'a:€207

Pu -V =Dy V=0, v-v=1,

where v := ¢. Hence the first fundamental form of p is ds? =
€27 (du® + dv?) and v is the unit normal vector field of p. More-
over, since

puu'V:au'CZL7 puv'V:Mapv'u'V:N-

Thus, p is the desired immersion.

Next, we prove the uniqueness. Let p be an immersion with
(3.12). Then the Gauss frame F satisfies the equation (3.13) as
well as F. Here, |py(ug,v0)| = e7#0:v0) |5, (ug, vo)| = e7(M0:v0),
and py, Py, ¥ are mutually perpendicular. Thus, by a suitable ro-
tation in R3, we may assume JF(ug, vo) coincides with F(ug,vo)
without loss of generality. Then F=F by the uniqueness part

Pu-py=a-b=0, Pu-Py=b-b=e
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of Theorem 2.3, and dp = dp holds. Hence p = p up to additive

constant vector.

O
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Ezxercises
3-1% Prove Theorem 3.14.

3-2" Let (z(u),2(u)) be a curve on the zz-plane parametrized
by the arc-length parameter (that is, (i) + (3)? = 1).
Find an isothermal parameter of the surface of revolution

p(u,v) = (z(u) cosv, z(u) sinv, z(u)).



