Integrability Conditions

Let $\Omega(u, v)$ and $\Lambda(u, v)$ be $n \times n$ -matrix valued C^{∞} -maps defined on a domain $U \subset \mathbb{R}^2$. In this section, we consider an initial value problem of a system of linear partial differential equations

(2.1)
$$\frac{\partial X}{\partial u} = X\Omega, \qquad \frac{\partial X}{\partial v} = X\Lambda, \qquad X(u_0, v_0) = X_0,$$

where $(u_0, v_0) \in U$ is a fixed point, X is an $n \times n$ -matrix valued unknown, and $X_0 \in M_n(\mathbb{R})$.

Proposition 2.1. If a matrix-valued C^{∞} -function X(u, v) defined on $U \subset \mathbb{R}^2$ satisfies (2.1) with $X_0 \in \operatorname{GL}(n, \mathbb{R})$, then $X(u, v) \in \operatorname{GL}(n, \mathbb{R})$ for all $(u, v) \in U$. In addition, if Ω and Λ are skew-symmetric and $X_0 \in \operatorname{SO}(n)$, then $X \in \operatorname{SO}(n)$ holds on U.

Proof. Take a smooth path $\gamma: [0,1] \to U$ joining (u_0, v_0) and (u, v), and write $\gamma(t) = (u(t), v(t))^4$. Setting $\widetilde{X}(t) := X \circ \gamma(t) =$

19. June, 2018. (Revised: 26. June, 2018)

⁴Since U is connected, there exists a continuous path $\gamma: [0,1] \to U$ joining (u_0, v_0) and (u, v). Then one can find a smooth curve $\tilde{\gamma}$ joining these points as follows: For each $t \in [0,1]$, there exists a positive number $\rho_t > 0$ such that $B_{\rho_t}(\gamma(t)) \subset U$. Since $\gamma([0,1])$ is compact, there exists a finite sequence $0 = t_0 < t_1 < \cdots < t_N = 1$ such that $\gamma([0,1]) = \bigcup_{j=0}^N B_{\rho_{t_j}}(\gamma(t_j))$, where $B_{\varepsilon}(p)$ denotes a disk of radius ε centered at p. Choose $p_j \in B_{\rho_{t_{j-1}}}(\gamma(t_{j-1})) \cap B_{\rho_{t_j}}(\gamma(t_j))$ $(j = 1, \ldots, N)$. Then the polygonal line with vertices $\{\gamma(0), p_1, \ldots, p_N, \gamma(1)\}$ lies on U and a piecewise linear path joining $\gamma(0) = (u_0, v_0)$ and $\gamma(1) = (u, v)$. Modifying such a path at vertices, we have a smooth path joining $\gamma(0)$ and $\gamma(1)$ (cf. see [2-1, Appendix B-5]). X(u(t), v(t)), (2.1) implies

$$\frac{d\widetilde{X}}{dt} = \widetilde{X}\left(\frac{du}{dt}\Omega + \frac{dv}{dt}\Lambda\right), \qquad \widetilde{X}(0) = X_0$$

Hence, by Proposition 1.3, det $\tilde{X}(1) \neq 0$. The latter half of the statement follows from Proposition 1.4.

Lemma 2.2. If a matrix-valued C^{∞} function $X : U \to \operatorname{GL}(n, \mathbb{R})$ satisfies (2.1), it holds that

(2.2)
$$\Omega_v - \Lambda_u = \Omega \Lambda - \Lambda \Omega.$$

Proof. Differentiating the first (resp. second) equation of (2.1) by v (resp. u), we have

$$X_{uv} = X_v \Omega + X \Omega_v = X(\Lambda \Omega + \Omega_v),$$

$$X_{vu} = X_u \Lambda + X \Lambda_u = X(\Omega \Lambda + \Lambda_u).$$

These two matrices coincide Since X is of class C^{∞} . Hence we have the conclusion.

The equality (2.2) is called the *integrability condition* or *compatibility condition* of (2.1).

Frobenius' theorem In this section, we shall prove the following

Theorem 2.3. Let $\Omega(u, v)$ and $\Lambda(u, v)$ be $n \times n$ -matrix valued C^{∞} -functions defined on a simply connected domain $U \subset \mathbb{R}^2$

satisfying (2.2). Then for each $(u_0, v_0) \in U$ and $X_0 \in M_n(\mathbb{R})$, there exists the unique $n \times n$ -matrix valued function $X : U \to M_n(\mathbb{R})$ (2.1). Moreover,

- if $X_0 \in \operatorname{GL}(n, \mathbb{R})$, $X(u, v) \in \operatorname{GL}(n, \mathbb{R})$ holds on U,
- if tr Ω = tr Λ = 0 holds on U and $X_0 \in SL(n, \mathbb{R}), X(u, v) \in SL(n, \mathbb{R})$ holds on U,
- if Ω and Λ are skew-symmetric matrices, and $X_0 \in SO(n)$, $X(u, v) \in SO(n)$ holds on U.

To prove Theorem 2.3, it is sufficient to show for the case $U = \mathbb{R}^2$. In fact, by Lemma 2.4 and Fact 2.5 below, we can replace U with \mathbb{R}^2 by an appropriate coordinate change.

Lemma 2.4. Let $V \ni (\xi, \eta) \mapsto (u, v) \in U$ be a diffeomorphism between domains $V, U \subset \mathbb{R}^2$, and let $\Omega = \Omega(u, v)$ and $\Lambda = \Lambda(u, v)$ be matrix-valued functions on U. Set

(2.3)

$$\widetilde{\Omega}(\xi,\eta) := \Omega\left(u(\xi,\eta), v(\xi,\eta)\right) \frac{\partial u}{\partial \xi} + \Lambda\left(u(\xi,\eta), v(\xi,\eta)\right) \frac{\partial v}{\partial \xi},$$

$$\widetilde{\Lambda}(\xi,\eta) := \Omega\left(u(\xi,\eta), v(\xi,\eta)\right) \frac{\partial u}{\partial \eta} + \Lambda\left(u(\xi,\eta), v(\xi,\eta)\right) \frac{\partial v}{\partial \eta}.$$

If a matrix-valued function $X : U \to M_n(\mathbb{R})$ satisfies (2.1), $\widetilde{X}(\xi, \eta) = X(u(\xi, \eta), v(\xi, \eta))$ satisfies

(2.4)
$$\frac{\partial \widetilde{X}}{\partial \xi} = \widetilde{X}\widetilde{\Omega}, \quad \frac{\partial \widetilde{X}}{\partial \eta} = \widetilde{X}\widetilde{\Lambda}, \quad \widetilde{X}(\xi_0, \eta_0) = X_0,$$

where $(u(\xi_0, \eta_0), v(\xi_0, \eta_0)) = (u_0, v_0)$. Moreover, the integrability condition (2.2) of (2.1) is equivalent to that of (2.4). *Proof.* The equation (2.1) can be considered as a equality of 1-forms

$$dX = X\Theta, \qquad \Theta := \Omega \, du + \Lambda \, dv$$

which does not depend on a choice of coordinate systems. If we write

$$\Theta = \Omega \, du + \Lambda \, dv = \Omega \, d\xi + \Lambda \, d\eta,$$

 $\varOmega,\ \Lambda,\ \widetilde{\varOmega}$ and $\widetilde{\Lambda}$ satisfy (2.3). Here, the integrability condition can be rewritten as

$$d\Theta + \Theta \wedge \Theta = O$$

which is an equality of 2-forms. This does not depend on coordinates, the conclusion follows. $\hfill\square$

Fact 2.5. A simply connected domain in \mathbb{R}^2 is diffeomorphic to \mathbb{R}^2 .

In fact, the Riemann mapping theorem yields the fact above⁵.

Proof of Theorem 2.3. By Lemma 2.4 and Fact 2.5, we may assume $U = \mathbb{R}^2$, $(u_0, v_0) = (0, 0)$ without loss of generality.

<u>Existence</u>: By the fundamental theorem of linear ordinary differential equations (Corollary 1.7), there exists the unique C^{∞} -map $F \colon \mathbb{R} \to M_n(\mathbb{R})$ such that

$$\frac{dF}{du}(u) = F(u)\Omega(u,0) \qquad F(0) = X_0$$

⁵Identifying \mathbb{R}^2 with the complex plane \mathbb{C} , a simply connected domain of $U = \mathbb{R}^2$ is conformally equivalent to the unit disc $D := \{z \in \mathbb{C} \mid |z| < 1\}$ or \mathbb{C} , because of the Riemann mapping theorem (cf. [2-3]). Though D and \mathbb{C} are not conformally equivalent, D and \mathbb{R}^2 are diffeomorphic. Then any simply connected domain is diffeomorphic to \mathbb{R}^2 .

For each $u \in \mathbb{R}$, we denote by $G^u(v)$ the unique solution of the ordinary differential equation

$$\frac{dG^u}{dv}(v) = G^u(v)\Lambda(u,v), \qquad G^u(0) = F(u)$$

in v. Then the function $X(u, v) := G^u(v)$ is the desired one. In fact, the solution of a ordinary differential equation depends smoothly on the initial value, X(u, v) is a matrix-valued C^{∞} function defined on \mathbb{R}^2 . By definition of $G^u(v)$, we have

(2.5)
$$\frac{\partial X}{\partial v}(u,v) = \frac{dG^u}{dv}(v) = G^u(v)\Lambda(u,v) = X(u,v)\Lambda(u,v).$$

Since X is C^{∞} , $X_{uv} = X_{vu}$ holds. Then by the integrability condition (2.2), it holds that

$$\begin{split} \frac{\partial}{\partial v} \left(\frac{\partial X}{\partial u} - X\Omega \right) &= \frac{\partial}{\partial u} \frac{\partial X}{\partial v} - \frac{\partial X}{\partial v} \Omega - X \frac{\partial \Omega}{\partial v} \\ &= \frac{\partial}{\partial u} (X\Lambda) - \frac{\partial X}{\partial v} \Omega - X \frac{\partial \Omega}{\partial v} \\ &= \frac{\partial X}{\partial u} \Lambda + X \frac{\partial \Lambda}{\partial u} - \frac{\partial X}{\partial v} \Omega - X \frac{\partial \Omega}{\partial v} \\ &= X (\Lambda_u - \Omega_v) + \frac{\partial X}{\partial u} \Lambda - \frac{\partial X}{\partial v} \Omega \\ &= X (\Lambda_u - \Omega_v - \Lambda\Omega) + \frac{\partial X}{\partial u} \Lambda \\ &= -X \Omega \Lambda + \frac{\partial X}{\partial u} \Lambda \\ &= \left(\frac{\partial X}{\partial u} - X\Omega \right) \Lambda. \end{split}$$

That is, for each fixed u, the map $H(v) := X_u(u, v) - X\Omega$ satisfies an ordinary differential equation in v as follows:

$$\frac{dH}{dv}(u,v) = H(u,v)\Lambda(u,v).$$

Letting v = 0, we have

$$H(u,0) = X_u(u,0) - X(u,0)\Omega(u,0)$$

= $(G^u)_u(u,0) - G^u(0)\Omega(u,0)$
= $F'(u) - F(u)\Omega(u,0) = O$

and then, by uniqueness of the solutions of initial value problems for ordinary differential equations, H(u, v) = 0 holds. Since (u, v) is arbitrarily taken, we have

$$\frac{\partial X}{\partial u}(u,v) = X(u,v)\Omega(u,v),$$

that is, X(u, v) is the solution of (2.1).

<u>Uniqueness</u>: Let X and \hat{X} be matrix-valued functions satisfying (2.1). Then $\hat{X} - X$ is a solution of (2.1) with $X_0 = O$ since (2.1) is linear. Hence, to show the uniqueness, it is sufficient to show that the solution X of (2.1) with initial condition $X_0 = O$ is the constant function X(u, v) = O.

Let X be such a solution of (2.1). Here, X(0,0) = O as we have set $(u_0, v_0) = (0, 0)$. For an arbitrary $(u, v) \in \mathbb{R}^2$, let F(t) := X(tu, tv). Then

(2.6)
$$\frac{d}{dt}F(t) = uX_u(tu, tv) + vX_v(tu, tv)$$
$$= X(tu, tv)(u\Omega(tu, tv) + v\Lambda(tu, tv)) = F(t)\omega(t)$$

holds, where $\omega(t) = u\Omega(tu, tv) + v\Lambda(tu, tv)$. Then the ordinary differential equation (2.6) for F(t) in t, the uniqueness of solutions of ordinary differential equations yields F(t) = O since F(0) = X(0,0) = O. In particular, we have X(u,v) = F(1) = O. Since (u, v) has been taken arbitrarily, X(u, v) = 0 holds for all $(u, v) \in \mathbb{R}^2$. Hence we have the uniqueness. \Box

Application: Poincaré's lemma.

Theorem 2.6 (Poincaré's lemma). If a differential 1-form

$$\omega = \alpha(u, v) \, du + \beta(u, v) \, dv$$

defined on a simply connected domain $U \subset \mathbb{R}^2$ is closed, that is, $d\omega = 0$ holds, then there exists a C^{∞} -function f on U such that $df = \omega$. Such a function f is unique up to additive constants.

Proof. Since $d\omega = (\beta_u - \alpha_v) du \wedge dv$, the assumption is equivalent to

$$\beta_u - \alpha_v = 0.$$

Consider a system of linear partial differential equations with unknown a 1×1 -matrix valued function (i.e. a real-valued function) $\xi(u, v)$ as

(2.8)
$$\frac{\partial \xi}{\partial u} = \xi \alpha, \qquad \frac{\partial \xi}{\partial v} = \xi \beta, \qquad \xi(u_0, v_0) = 1.$$

Then it satisfies (2.2) because of (2.7). Hence by Theorem 2.3, there exists a smooth function $\xi(u, v)$ satisfying (2.8). In particular, Proposition 1.3 yields $\xi = \det \xi$ never vanishes. Since

 $\xi(u_0, v_0) = 1 > 0$, this means that $\xi > 0$ holds on U. Letting $f := \log \xi$, we have the function f satisfying $df = \omega$.

Next, we show the uniqueness: if two functions f and g satisfy $df = dg = \omega$, it holds that d(f - g) = 0. Hence by connectivity of U, f - g must be constant.

Application: Conjugation of Harmonic functions. In this paragraph, we identify \mathbb{R}^2 with the complex plane \mathbb{C} . It is well-known that a function

(2.9)
$$f: U \ni u + \mathrm{i}v \longmapsto \xi(u, v) + \mathrm{i}\eta(u, v) \in \mathbb{C}$$
 $(\mathrm{i} = \sqrt{-1})$

defined on a domain $U \subset \mathbb{C}$ is *holomorphic* if and only if it satisfies the following relation, called the *Cauchy-Riemann equations*:

(2.10)
$$\frac{\partial\xi}{\partial u} = \frac{\partial\eta}{\partial v}, \qquad \frac{\partial\xi}{\partial v} = -\frac{\partial\eta}{\partial u}$$

Definition 2.7. A function $f: U \to \mathbb{R}$ defined on a domain $U \subset \mathbb{R}^2$ is said to be *harmonic* if it satisfies

$$\Delta f = f_{uu} + f_{vv} = 0$$

The operator Δ is called the *Laplacian*.

Proposition 2.8. If function f in (2.9) is holomorphic, $\xi(u, v)$ and $\eta(u, v)$ are harmonic functions.

Proof. By (2.10), we have

$$\xi_{uu} = (\xi_u)_u = (\eta_v)_u = \eta_{vu} = \eta_{uv} = (\eta_u)_v = (-\xi_v)_v = -\xi_{vv}.$$

Hence $\Delta \xi = 0$. Similarly,

$$\eta_{uu} = (-\xi_v)_u = -\xi_{vu} = -\xi_{uv} = -(\xi_u)_v = -(\eta_v)_v = -\eta_{vv}.$$

Thus $\Delta \eta = 0.$

Theorem 2.9. Let $U \subset \mathbb{C} = \mathbb{R}^2$ be a simply connected domain and $\xi(u, v)$ a C^{∞} -function harmonic on U^6 . Then there exists a C^{∞} harmonic function η on U such that $\xi(u, v) + i\eta(u, v)$ is holomorphic on U.

Proof. Let $\alpha := -\xi_v du + \xi_u dv$. Then by the assumption,

$$d\alpha = (\xi_{vv} + \xi_{uu}) \, du \wedge dv = 0$$

holds, that is, α is a closed 1-form. Hence by simple connectivity of U and the Poincaré's lemma (Theorem 2.6), there exists a function η such that $d\eta = \eta_u du + \eta_v dv = \alpha$. Such a function η satisfies (2.10) for given ξ . Hence $\xi + i\eta$ is holomorphic in u + iv.

Example 2.10. A function $\xi(u, v) = e^u \cos v$ is harmonic. Set

 $\alpha := -\xi_v \, du + \xi_u \, dv = e^u \sin v \, du + e^u \cos v \, dv.$

Then $\eta(u, v) = e^u \sin v$ satisfies $d\eta = \alpha$. Hence

$$\xi + i\eta = e^u(\cos v + i\sin v) = e^{u+iv}$$

is holomorphic in u + iv.

Definition 2.11. The harmonic function η in Theorem 2.9 is called the *conjugate* harmonic function of ξ .

The fundamental theorem for Surfaces. Let $p: U \to \mathbb{R}^3$ be a parametrization of a *regular surface* defined on a domain $U \subset \mathbb{R}^2$. That is, p = p(u, v) is a C^{∞} -map such that p_u and p_v are linearly independent at each point on U. Then $\nu := (p_u \times p_v)/|p_u \times p_v|$ is the *unit normal vector field* to the surface. The matrix-valued function $\mathcal{F} := (p_u, p_v, \nu): U \to M_3(\mathbb{R})$ is called the *Gauss frame* of p. We set

(2.11)
$$ds^{2} := E \, du^{2} + 2F \, du \, dv + G \, dv^{2},$$
$$\Pi := L \, du^{2} + 2M \, du \, dv + N \, dv^{2},$$

where

$$E = p_u \cdot p_u \qquad F = p_u \cdot p_v \qquad G = p_v \cdot p_v$$
$$L = p_{uu} \cdot \nu \qquad M = p_{uv} \cdot \nu \qquad N = p_{vv} \cdot \nu.$$

We call ds^2 (resp. II) the first (resp. second) fundamental form. Note that linear independence of p_u and p_v implies

(2.12)
$$E > 0$$
, $G > 0$ and $EG - F^2 > 0$.

Set

2.13)
$$\Gamma_{11}^{1} := \frac{GE_{u} - 2FF_{u} + FE_{v}}{2(EG - F^{2})},$$
$$\Gamma_{11}^{2} := \frac{2EF_{u} - EE_{v} - FE_{u}}{2(EG - F^{2})},$$
$$\Gamma_{12}^{1} = \Gamma_{21}^{1} := \frac{GE_{v} - FG_{u}}{2(EG - F^{2})},$$

⁶The theorem holds under the assumption of C^2 -differentiablity.

$$\begin{split} \Gamma_{12}^2 &= \Gamma_{21}^2 := \frac{EG_u - FE_v}{2(EG - F^2)}, \\ \Gamma_{22}^1 &:= \frac{2GF_v - GG_u - FG_v}{2(EG - F^2)}, \\ \Gamma_{22}^2 &:= \frac{EG_v - 2FF_v + FG_u}{2(EG - F^2)}. \end{split}$$

and

(2.14) $A = \begin{pmatrix} A_1^1 & A_2^1 \\ A_1^2 & A_2^2 \end{pmatrix} := \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} L & M \\ M & N \end{pmatrix}.$

The functions Γ_{ij}^k and the matrix A are called the *Christoffel* symbols and the Weingarten matrix. We state the following the fundamental theorem for surfaces, and give a proof (for a special case) in the following section.

Theorem 2.12 (The Fundamental Theorem for Surfaces). Let $p: U \ni (u, v) \mapsto p(u, v) \in \mathbb{R}^3$ be a parametrization of a regular surface defined on a domain $U \subset \mathbb{R}^2$. Then the Gauss frame $\mathcal{F} := \{p_u, p_v, \nu\}$ satisfies the equations

(2.15)
$$\frac{\partial \mathcal{F}}{\partial u} = \mathcal{F}\Omega, \qquad \frac{\partial \mathcal{F}}{\partial v} = \mathcal{F}\Lambda, \Omega := \begin{pmatrix} \Gamma_{11}^1 & \Gamma_{12}^1 & -A_1^1 \\ \Gamma_{11}^2 & \Gamma_{12}^2 & -A_1^2 \\ L & M & 0 \end{pmatrix}, \qquad \Lambda := \begin{pmatrix} \Gamma_{21}^1 & \Gamma_{22}^1 & -A_2^1 \\ \Gamma_{21}^2 & \Gamma_{22}^2 & -A_2^2 \\ M & N & 0 \end{pmatrix}$$

where Γ_{jk}^{i} (i, j, k = 1, 2), A_{l}^{k} and L, M, N are the Christoffel symbols, the entries of the Weingarten matrix and the entries of the second fundamental form, respectively.

Theorem 2.13. Let $U \subset \mathbb{R}^2$ be a simply connected domain, E, F, G, L, M, $N \subset \mathcal{C}^{\infty}$ -functions satisfying (2.12), and Γ_{ij}^k , A_i^j the functions defined by (2.13) and (2.14), respectively. If Ω and Λ satisfies

$$\Omega_v - \Lambda_u = \Omega \Lambda - \Lambda \Omega_z$$

there exists a parameterization $p: U \to \mathbb{R}^3$ of regular surface whose fundamental forms are given by (2.11). Moreover, such a surface is unique up to orientation preserving isometries of \mathbb{R}^3 .

References

- [2-1] 梅原雅顕・山田光太郎:曲線と曲面―微分幾何的アプローチ(改訂版), 裳華房,2014.
- [2-2] Masaaki Umehara and Kotaro Yamada, Differential Geometry of Curves and Surfaces, World Scientific, 2017.
- [2-3] Lars V. Ahlfors, Complex Analysis, Dover Publications, 1980.

Exercises

- **2-1** Let $\xi(u, v) = \log \sqrt{u^2 + v^2}$ be a function defined on $U = \mathbb{R}^2 \setminus \{(0, 0)\}$
 - (1) Show that ξ is harmonic on U.
 - (2) Find the conjugate harmonic function η of ξ on

$$V = \mathbb{R}^2 \setminus \{(u, 0) \mid u \leq 0\} \subset U.$$

(3) Show that there exists no conjugate harmonic function of ξ defined on U.