Linear Ordinary Differential Equations
Preliminaries: Matrix Norms. Denote by M, (R) the set
of n X n matrix with real components, which can be identified

the vector space R™. In particular, the Euclidean norm of R"’
induces a norm

(1.1) | X|g = \/tr(" X X) =

on M,,(R). On the other hand, we let

(1.2) | X |m = sup {|X1|J|, veR™\ {0}},

|v

where | - | on the right-hand side denotes the Euclidean norm of
R™.

Lemma 1.1. (1) The map X — |X|um is a norm of M, (R).
(2) For X,Y € M,,(R), it holds that | XY |m < | X |Mm [Y]m-

(3) Let A = A(X) be the mazimum eigenvalue of semi-positive
definite symmetric matriz "X X. Then |X|m = VA holds.

4) (1/vn)IX[e = |X|u = [ X]e.

(5) The map |- |m: Mp(R) = R is continuous with respect to
the Euclidean norm.
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Proof. Since | Xwv|/|v| is invariant under scalar multiplications
to v, we have |X|y = sup{|Xv|; v € S !}, where S"~ 1 is
the unit sphere in R™. Here, the S"! > = — |Az| € R is
a continuous function defined on a compact space, and so the
map takes maximum. Thus, the right-hand side of (1.2) is well-
defined. It is easy to verify that | - |y satisfies the axiom of the
norm.

Since A := "X X is positive semi-definite the eigenvalues Aj

(j = 1,...,n) are non-negative real numbers. In particular,
there exists an orthonormal basis [a;] of R™ satisfying Aa; =
Aja; (7 =12,...,n). Let A be the maximum eigenvalues of A,

and write v = viay1 + - - - +v,a,. Then it holds that
(Xv, Xv) = Mol + -+ M2 S A (v,v),

where ( , ) is the Euclidean inner product of R”. The equality of
this inequality holds if and only if v is the A-eigenvector, proving
(3). Noticing the norm (1.1) is invariant under conjugations
X = "PXP (P € O(n)), we obtain |X|g = VA + -+ \, by
diagonalizing * X X by an orthogonal matrix P. Then we obtain
(4). Hence two norms |- |g and | - | induce the same topology
M,,(R). In particular, we have (5). O

Preliminaries: Matrix-valued Functions.

Lemma 1.2. Let X and Y be C*°-maps defined on a domain
U C R™ into M, (R). Then
0 0X aYy

1) —(XY)=—Y +X—
() 8’uj( ) auj + auj’
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(2) idetX =tr (fw(), and
an auj
0 0X
X—l — _X—l X—l
(3) 8uj an ’

where X is the cofactor matriz of X, and we assume in (3).

Proposition 1.3. Assume two C*° matriz-valued functions X (t)
and £2(t) satisfy

(1.3) d)fot) = X (¢)02(¢), X (to) = Xop.
Then
(1.4) det X (t) = (det Xg) exp /t tr 2(7) dr

holds. In particular, if Xo € GL(n,R), ! then X(t) € GL(n,R)
for all t.

Proof. By (2) of Lemma 1.2, we have

dt dt
= tr(det X (£)£2(t)) = det X (¢) tr £2(¢).

4 et X(t) =tr ()?(t)dx(t)) =tr (f((t)X(t)Q(t))

Here, we used the relation XX = XX = (det X)id?. Hence
4 (p(t)~'det X(t)) = 0, where p(t) is the right-hand side of
(1.4). 0
LGL(n,R) = {4 € M, (R); det A # 0}: the general linear group.
2In this lecture, id denotes the identity matrix.
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Proposition 1.4. Assume (2(t) in (1.3) is skew-symmetric for
all t, that is, "2 + 2 is identically O. If Xo € O(n) (resp.
Xo €80(n) )3, X(t) € O(n) (resp. X(t) € SO(n)) for all t.

Proof. By (1) in Lemma 1.2,

d, oy dX, brdx
Clt(XX)_thJrX(dt)

= XX+ X'2'X =X(2+'0)'X =0.
Hence X' X is constant, that is, if Xy € O(n),
X()'X(t) = X(t) X (to) = Xo' Xo = id.

if Xo € O(n), proves the first case of the proposition. Since
det A = £1 when A € O(n), the second case follows by conti-
nuity of det X (¢). O

Preliminaries: Norms of Matrix-Valued functions. Let
I = [a,b] be a closed interval, and denote by C°(I,M,(R))
the set of continuous functions X: I — M, (R). For any fixed
number k, we define

(1.5) || X||1,% := sup {e*kt\X(t)h\/{; tGI}

for X € C°(I,M,,(R)). When k = 0, ||-||1,0 is the uniform norm
for continuous functions, which is complete. Similarly, one can
prove the following in the same way:

30(n) = {A € Ma(R); tAA = A*A = id}: the orthogonal group;
SO(n) = {A € O(n); det A = 1}: the special orthogonal group.
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Lemma 1.5. The map || - ||1.x: C°(I,M,(R)) is a complete
norm.

Linear Ordinary Differential Equations. We prove the
fundamental theorem for linear ordinary differential equations.

Proposition 1.6. Let 2(t) be a C*°-function valued in M, (R)
defined on an interval I. Then for each tg € I, there exists the
unique matriz-valued C™-function X (t) = Xy, 1a(t) such that

dX (1)

(1.6) -

= X(OR),  X(ty) =id.

Proof. Uniqueness: Assume X (¢) and Y (¢) satisfy (1.6). Then

Y(t) - X(1) :/ (Y'(r) - X'(r)) dr

to

:/ (Y(7) — X(7)) 2(r) dr

to
holds. Hence for an arbitrary closed interval J C I,

t

‘(Y(T) — X(T))Q(T)| dr

Y () — X&) = ) M

t

S| V(7)) = X (1) [92(7) ]y d7

/ e Y (7) = X(7)]y €7 1207y, dr

to
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t
/ erT dr
to

Supy |Q|M6kt
k|

= HY—XHJ,kSgPIQIM

=Y = X[l 1 — ettt

holds for t € J. Here, setting J = [tg,a] and k = 2sup; |2|m,
we have

1
1Y = Xllsx = SIY = X[k,

that is, [|Y — X||sx = 0, proving Y (¢t) = X (¢) for t € J. Simi-
larly, on the interval J' = [a,to], we can conclude Y = X on J’
setting k = —2sup |2|um. Since J and J’ are arbitrary, Y = X
holds on I.

Existence: Let J := [tg,a] C I be a closed interval, and de-
fine a sequence {X;} of matrix-valued functions defined on I
satisfying X(¢t) = id and

t

L7) Xpai(t) :id+/ X, (1)) dr (G =0,1,2,...).
to

Let k := 2sup; |£2|m. Then

|Xj+1(t)—Xj(t)|M§/t |X;(7) = Xj—1(7)Im[$2(7) |m dT

sup; [£2|m

< eM|X; — X alluk .

ek‘t
= 7||Xj = Xj-1llsk

and hence || X; 11— X|[sx £ 3| X;—X;_1]| 7k, that is, {X;} isa
Cauchy sequence with respect to ||-||s5. Thus, by completeness
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(Lemma 1.5), it converges to some X € C°(J, M, (R)). By (1.7),
the limit X satisfies

X(to) =id, X(t) = id—|—/ttX(T)Q(T) dr.

Applying the fundamental theorem of calculus, we can see that
X satisfies X'(t) = X (¢)2(¢) (' = d/dt). Since J can be taken
arbitrarily, existence of the solution on I N{t = ¢y} is proved.
Existence of I N {t < tg} can be proved in the same way. So
far, existence of a differentiable function X (¢) satisfying (1.6) is
obtained.

Finally, we shall prove that X is of class C*°. Since X'(t) =
X (t)02(t), the derivative X’ of X is continuous. Hence X is of
class C1, and so is X (¢)£2(¢). Thus we have that X'(¢) is of class
C', and then X is of class C2. Iterating this argument, we can
prove that X (¢) is of class C" for arbitrary r. O

Corollary 1.7. Let 2(t) be a matriz-valued C™-function de-
fined on an interval I. Then for each ty € I and Xo € M, (R),
there exists the unique matriz-valued C™-function X (t) = Xy, x, (t)
defined on I such that

dX (t)
dt

In particular, Xy, x,(t) is of class C* in Xy and t.

(1.8) = X(1)01),  X(t) = Xo.

Proof. We rewrite X (¢) in Proposition 1.6 as Y (t) = X, ia(t).
Then the function

(19) X(t) = X()Y(t) = XOth,id(t)7
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is desired one. Conversely, assume X (¢) satisfies the conclusion.
Noticing Y (¢) is a regular matrix for all ¢ because of Proposi-
tion 1.3,

satisfies
dw  dX dY
=yl XYy '=—vy!
dt dt ®) dt
=Xy ' - Xy 'vyovyl'=0.
Hence

W(t) =W(to) = X(to)Y (to) " = Xo.
Hence the uniqueness is obtained. The final part is obvious by

the expression (1.9). O

Proposition 1.8. Let 2(t) and B(t) be a matriz-valued C*-

functions defined on I. Then for each tyg € I and Xy € M, (R),

there exists the unique matriz-valued C*°-function defined on I

satisfying

dX(t)
dt

Proof. Rewrite X in Proposition 1.6 as Y (¢) := X, ;a(¢). Then

(1.10) = X))+ B(t),  X(to) = Xo.

(1.11) X(t) = (Xo + /tB(T)Y_l(T) d7> Y (t)

to

satisfies (1.10). Conversely, if X satisfies (1.10), W := XY !
satisfies

X' =WY+WY'=WY+WYR, XQ2+B=WY2+ B,
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and then we have W’ = BY ~1. Since W (t() = X,

t
W =Xo+ | B(r)Y"(r)dr.

to
Thus we obtain (1.11). O

Theorem 1.9. Let I and U be an interval and a domain in R™,
respectively, and let 2(t, &) and B(t, &) be matriz-valued C'*°-
functions defined on I x U (v = (a1,...,am)). Then for each
to €I, a €U and Xy € M, (R), there exists the unique matriz-
valued C™-function X (t) = Xy, x,,a(t) defined on I such that

(1.12) %t(t):X(t)Q(t,a)—kB(t?a), X (to) = Xo.

Moreover,
I xIxM,(R)xU> (tto, Xo, ) = Xy x,,a(t) € M, (R)
is C*°-map.

Proof. Let 2(t,&) := 2(t + to, ) and B(t, &) = B(t + to, o),
and let X (¢) := X (t + to). Then (1.12) is equivalent to

dX(t) =, ~ ~ -
(1.13) dt( ) _ X()2(t,&) + B(t,&), X(0) = Xo,
where & := (to,a1,...,q;,). There exists the unique solution

X(t) = Xid,XO,d(t) of (1.13) for each & because of Proposi-
tion 1.8. So it is sufficient to show differentiability with respect
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to the parameter &. We set Z = Z(t) as the unique solution of
p o ~
(1.14) E:ZQ+X—_+—_, Z(0)=0.

Then it holds that Z = 8)?/80@- (Problem 1-1). In particular,
by the proof of Proposition 1.8, it holds that

0X - 0Q(r,a) 0B(r,a))\ . _,
L=—= X Y dr|Y (t).
- (/ ( () 2 (r)dr] v (1)
Here, Y (t) is the unique matrix-valued C*°-function satisfying

Y/(t) = Y ()2(t, &), and Y (0) = id. Hence X is a C°°-function
in (t,&). O

Fundamental Theorem for Space Curves. As an appli-
cation, we prove the fundamental theorem for space curves. A
C>®-map 7: I — R3 defined on an interval I € R into R? is
said to be a regular curve if 4 # 0 holds on I. For a regular
curve 7(t), there exists a parameter change t = t(s) such that
(s) := ~(t(s)) satisfies |/ (s)| = 1. Such a parameter s is called
the arc-length parameter.

Let v(s) be a regular curve in R? parametrized by the arc-
length satisfying 7" (s) # 0 for all s. Then

)
Ol

forms a positively oriented orthonormal basis {e, n, b} of R3 for
each s. Regarding each vector as column vector, we have the

e(s) :=+'(s), n(s): b(s) := e(s) x n(s)
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matrix-valued function
(1.15) F(s) = (e(s),n(s),b(s)) € SO(3).

in s, which is called the Frenet frame associated to the curve .
Under the situation above, we set

K(s) = 17"(s)| >0,  7(s) = —(b'(s),n(s)),

which is called the curvature and torsion, respectively, of ~.
Using these quantities, the Frenet frame satisfies

0 —k O

(1.16) E:}'Q, N=|x 0 -7
ds

0 7 0

Proposition 1.10. The curvature and the torsion are invari-
ant under the transformation © — Ax + b of R® (A € SO(3),
b € R3). Conversely, two curves v1(s), y2(s) parametrized by
arc-length parameter have common curvature and torsion, there
exist A € SO(3) and b € R3 such that yo = Ay, + b.

Proof. Let k, 7 and F7 be the curvature, torsion and the Frenet
frame of 1, respectively. Then the Frenet frame of 7o = Ay, +b
(A €S0(3), b € R3) is Fo = AF;. Hence both F; and F; satisfy
(1.16), and then 77 and 72 have common curvature and torsion.

Conversely, assume 7; andys have common curvature and
torsion. Then the frenet frame F7, Fy both satisfy (1.16). Let
F be the unique solution of (1.16) with F(t9) = id. Then by
the proof of Corollary 1.7, we have F;(t) = F;(to)F(t) (j =
1,2). In particular, since F; € SO(3), Fa(t) = AFi(t) (A =
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Fa(to)Fi(to)~t € SO(3)). Comparing the first column of these,
v5(s) = A~i(t) holds. Integrating this, the conclusion follows.
O

Theorem 1.11 (The fundamental theorem for space curves).
For given C*°-functions k(s) and 7(s) defined on I such that
k(s) > 0 on I. Then there exists a space curve y(s) parametrized
by arc-length whose curvature and torsion are k and T, respec-
tively. Moreover, such a curve is unique up to transformation
z— Az +b (A€ SO(3), be R?) of R3.

Proof. We have already shown the uniqueness in Proposition 1.10.
We shall prove the existence: Let 2(s) be as in (1.16), and
F(s) the solution of (1.16) with F(sg) = id. Since {2 is skew-
symmetric, F(s) € SO(3) by Proposition 1.4. Denoting the
column vectors of F by e, n, b, and let

~(s) := / e(o) do.
S0
Then F is the frenet frame of v, and k, and 7 are the curvature
and torsion of +, respectively (Problem 1-2). O

Ezxercises
1-1 Verify that Z in (1.14) coincides with (“))Z'/(%zj.

1-2 Complete the proof of Theorem 1.11.
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Integrability Conditions

Let £2(u,v) and A(u,v) be nxn-matrix valued C*°-maps defined
on a domain U C R2. In this section, we consider an initial value
problem of a system of linear partial differential equations

X _
ou

X

XN —_—=
’ ov

(21) )(/17 X(UO,’U()) :Xo,

where (ug, vg) € U is a fixed point, X is an n X n-matrix valued
unknown, and Xy € M, (R).

Proposition 2.1. If a matriz-valued C*®-function X (u,v) de-
fined on U C R? satisfies (2.1) with Xo € GL(n,R), then
X (u,v) € GL(n,R) for all (u,v) € U. In addition, if 2 and
A are skew-symmetric and Xo € SO(n), then X € SO(n) holds
on U.

Proof. Take a smooth path v: [0,1] — U joining (ug,v9) and
(u,v), and write y(t) = (u(t),v(t))*. Setting X (t) := X ov(t) =

19. June, 2018. (Revised: 26. June, 2018)

4Since U is connected, there exists a continuous path v: [0,1] — U
joining (up,vo) and (u,v). Then one can find a smooth curve 4 join-
ing these points as follows: For each ¢ € [0,1], there exists a positive
number p; > 0 such that By, (y(¢t)) C U. Since 7([0,1]) is compact,
there exists a finite sequence 0 = t9 < t1 < --- < ty = 1 such that
~([0,1]) = Uj-V:OBpt]_ (v(t4)), where Be(p) denotes a disk of radius € cen-
tered at p. Choose p; € Bpt],71 (v(tj—1)) N Bptj (v(t;)) (G = 1,...,N).
Then the polygonal line with vertices {v(0), p1,...,pn,7(1)} lies on U and
a piecewise linear path joining v(0) = (uo, vo) and (1) = (u,v). Modifying
such a path at vertices, we have a smooth path joining v(0) and (1) (cf.
see [2-1, Appendix B-5]).
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X (u(t),v(t)), (2.1) implies

% =X (durw d”A) . X(0) = X,.

Hence, by Proposition 1.3, det )?(1) # 0. The latter half of the
statement follows from Proposition 1.4. O

Lemma 2.2. If a matriz-valued C* function X : U — GL(n,R)
satisfies (2.1), it holds that

(2.2) Qy — Ay = QA — AL.

Proof. Differentiating the first (resp. second) equation of (2.1)
by v (resp. u), we have

Xuw = X2+ X2, = X(A2+ (2,),

Xvu - XuA + XAu = X(QA + Au)

These two matrices coincide Since X is of class C°°. Hence we
have the conclusion. O

The equality (2.2) is called the integrability condition or com-
patibility condition of (2.1).
Frobenius’ theorem In this section, we shall prove the fol-

lowing

Theorem 2.3. Let 2(u,v) and A(u,v) be n x n-matriz valued
C-functions defined on a simply connected domain U C R?
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satisfying (2.2). Then for each (ug,vo) € U and Xy € M, (R),
there exists the unique n X n-matriz valued function X: U —
M, (R) (2.1). Moreover,

e if Xo € GL(n,R), X(u,v) € GL(n,R) holds on U,
o iftr 2 =trA =0 holds onU and Xy € SL(n,R), X(u,v) €
SL(n,R) holds on U,

o if 2 and A are skew-symmetric matrices, and Xo € SO(n),
X (u,v) € SO(n) holds on U.

To prove Theorem 2.3, it is sufficient to show for the case
U = R2?. In fact, by Lemma 2.4 and Fact 2.5 below, we can
replace U with R? by an appropriate coordinate change.

Lemma 2.4. Let V 5 (§,n) — (u,v) € U be a diffeomorphism
between domains V, U C R2, and let 2 = Q(u,v) and A =
A(u,v) be matriz-valued functions on U. Set

Qe = fz(u@,n),v(g,n))% T A€ ) v(En) 2L

A&, n) == 2(u(&,n), v(E, n>)—n+A( w(&,n),v(&,n)) A

55
ov
on’

(2.3)

If a matriz-valued function X : U — M, (R) satisfies (2.1), X(£,n) =

X(u(&,m),v(&,m)) satisfies

X X
2.4 = X.Q = XA X X
( ) 85 8 (503 770) 05
where ( (&o,m0),v 507770)) (up,vp). Moreover, the integrabil-
ity condition (2.2) of (2.1) is equivalent to that of (2.4).
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Proof. The equation (2.1) can be considered as a equality of
1-forms

dX = X6, O = 2du+ Adv,

which does not depend on a choice of coordinate systems. If we
write

O =0du+ Adv = Qd¢ + Adn,

2, A, 2 and A satisfy (2.3). Here, the integrability condition
can be rewritten as

dO+O /N6 =0,

which is an equality of 2-forms. This does not depend on coor-
dinates, the conclusion follows. ]

Fact 2.5. A simply connected domain in R? is diffeomorphic to
R2.

In fact, the Riemann mapping theorem yields the fact above®.

Proof of Theorem 2.3. By Lemma 2.4 and Fact 2.5, we may as-
sume U = R20 (ug,vp) = (0,0) without loss of generality.

Ezistence: By the fundamental theorem of linear ordinary
differential equations (Corollary 1.7), there exists the unique
C*-map F: R — M, (R) such that

) = P 2(w0)  F(0) = X,
5Identifying R? with the complex plane C, a simply connected domain
of U = R? is conformally equivalent to the unit disc D := {2z € C||z| < 1}
or C, because of the Riemann mapping theorem (cf. [2-3]). Though D and
C are not conformally equivalent, D and R? are diffeomorphic. Then any
simply connected domain is diffeomorphic to R2.
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For each u € R, we denote by G*(v) the unique solution of the
ordinary differential equation
aGg"
dv
in v. Then the function X (u,v) := G"(v) is the desired one.
In fact, the solution of a ordinary differential equation depends

smoothly on the initial value, X (u,v) is a matrix-valued C'*°
function defined on R2. By definition of G*(v), we have

(2.5) aa—)v((u,v) = dg)u (v) = G*(vV)A(u,v) = X (u,v)A(u, ).

Since X is C*°, Xy, = Xy holds. Then by the integrability
condition (2.2), it holds that
0 (0X 00X 090X on
&)(E)U_X ):auav‘av X
0 0X on
=—(XA) - —N-X—
5 (XA
_0X n oA o0X 00
- Ou Oou  Ov v
=X(A, — 02, —AQ)+ —A
U

=-XNA+ 8—X/1
ou

0X
(2 xo)a

(v) = G*(0)A(u,v),  G*(0) = F(u)
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That is, for each fixed u, the map H(v) = X,(u,v) — X2
satisfies an ordinary differential equation in v as follows:

dH
%(m v) = H(u,v)A(u,v).

Letting v = 0, we have
H(u,0) = X, (u,0) — X (u,0)2(u,0)
= (G")u(u,0) — G*(0)£2(u,0)
= F'(u) — F(u)2(u,0) = O

and then, by uniqueness of the solutions of initial value problems
for ordinary differential equations, H(u,v) = 0 holds. Since
(u,v) is arbitrarily taken, we have

%(u, v) = X(u,v)2(u,v),
that is, X (u,v) is the solution of (2.1).

Uniqueness: Let X and X be matrix-valued functions satis-
fying (2.1). Then X — X is a solution of (2.1) with X, = O since
(2.1) is linear. Hence, to show the uniqueness, it is sufficient to
show that the solution X of (2.1) with initial condition Xy = O
is the constant function X (u,v) = O.

Let X be such a solution of (2.1). Here, X(0,0) = O as
we have set (ug,vo) = (0,0). For an arbitrary (u,v) € R? let
F(t) :== X (tu,tv). Then

(2.6) %F(t) = uX, (tu, tv) + vX, (tu, tv)

= X (tu, tv)(u2(tu, tv) + vA(tu, tv)) = F(t)w(t)
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holds, where w(t) = uf2(tu, tv) + vA(tu,tv). Then the ordinary
differential equation (2.6) for F'(t) in ¢, the uniqueness of so-
lutions of ordinary differential equations yields F(t) = O since
F(0) = X(0,0) = O. In particular, we have X (u,v) = F(1) =
O. Since (u,v) has been taken arbitrarily, X (u,v) = 0 holds for
all (u,v) € R2. Hence we have the uniqueness. O

Application: Poincaré’s lemma.

Theorem 2.6 (Poincaré’s lemma). If a differential 1-form
w = a(u,v)du+ B(u,v) dv

defined on a simply connected domain U C R? is closed, that is,
dw = 0 holds, then there exists a C*°-function f on U such that
df = w. Such a function f is unique up to additive constants.

Proof. Since dw = (8, —aw,) duidv, the assumption is equivalent
to

(2.7) Bu — 0ty = 0.

Consider a system of linear partial differential equations with
unknown a 1 x 1-matrix valued function (i.e. a real-valued func-
tion) &(u,v) as

0 0
08  E=ta  So=th Euw)=1

Then it satisfies (2.2) because of (2.7). Hence by Theorem 2.3,
there exists a smooth function £(u,v) satisfying (2.8). In par-
ticular, Proposition 1.3 yields £ = det £ never vanishes. Since
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&(up,v9) = 1 > 0, this means that & > 0 holds on U. Letting
f :=1log&, we have the function f satisfying df = w.

Next, we show the uniqueness: if two functions f and g
satisfy df = dg = w, it holds that d(f — ¢g) = 0. Hence by
connectivity of U, f — ¢g must be constant. O

Application: Conjugation of Harmonic functions. In
this paragraph, we identify R? with the complex plane C. It
is well-known that a function

(2.9) f:U>su+iv— &(u,v) +in(u,v) € C (i=+-1)

defined on a domain U C C is holomorphic if and only if it sat-
isfies the following relation, called the Cauchy-Riemann equa-
tions:

9 _On 08 _ On

ou O’ Ov ou’

Definition 2.7. A function f: U — R defined on a domain
U c R? is said to be harmonic if it satisfies

A.f:fuu+fvv =0.

The operator A is called the Laplacian.

(2.10)

Proposition 2.8. If function f in (2.9) is holomorphic, &(u,v)
and n(u,v) are harmonic functions.

Proof. By (2.10), we have

guu = (gu)u = (nv)u = Nvu = Nuv = (nu)v = (_gv)v = —Quv-
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Hence A¢ = 0. Similarly,

Nuuw = (_gv)u = _gvu = _fuv = _(fu)v = _(nv)v = —Nyv-
Thus Anp = 0. O

Theorem 2.9. Let U C C = R? be a simply connected domain
and &(u,v) a C*®-function harmonic on U®. Then there erists
a C* harmonic function n on U such that &(u,v) + in(u,v) is
holomorphic on U.

Proof. Let a := —&, du + &, dv. Then by the assumption,
do = &y + Euu) duNdv =0

holds, that is, « is a closed 1-form. Hence by simple connectivity
of U and the Poincaré’s lemma (Theorem 2.6), there exists a
function n such that dn = n, du + 1, dv = «. Such a function
7 satisfies (2.10) for given . Hence £ + in is holomorphic in
u + iv. O

Example 2.10. A function £(u,v) = €* cosv is harmonic. Set
a:= =& du+ &, dv=e"sinvdu+ e" cosvdv.
Then n(u,v) = e"sinwv satisfies dn = «. Hence
£ +in = e*(cosv + isinv) = e
is holomorphic in u + iv.

Definition 2.11. The harmonic function n in Theorem 2.9 is
called the conjugate harmonic function of &.

6The theorem holds under the assumption of C2-differentiablity.
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The fundamental theorem for Surfaces. Let p: U — R?
be a parametrization of a regular surface defined on a domain
U C R2. That is, p = p(u,v) is a C*°-map such that p, and
p, are linearly independent at each point on U. Then v :=
(pu X Pv)/|Pu X Poul is the unit normal vector field to the surface.
The matrix-valued function F := (py,pv,v): U — M3(R) is
called the Gauss frame of p. We set

ds® := E du® + 2F dudv + G dv?,

(2.11) 9 )
Il .= Ldu® +2M dudv + N dv*,

where

E:pu'pu F:pu'pv G:pv‘pv
L=py, v M =py, v N =pyy - 1.

We call ds? (resp. II) the first (vesp. second) fundamental form.
Note that linear independence of p, and p, implies

(2.12) E>0, G>0 and EG-F?>0.
Set
GE, —2FF,+ FE

2.13 r=- - i
(2.13) 1 2(EG — F2)

r2 . 2BF,— EE, — FE,

e 2(EG — F2)

E,—F
I :F2111:G > e

2(EG — F2)’
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EG, - FE
2 2 u v
Iy =1 = 2(EG — F2?)’
r . 2GF, = GG, — FG,
2 2(EG — F?2)
2 . BGy —2FF, + FG,
2 2(EG — F?)
and
(Ab AN (B F\'(L M
(2.14) A_<A% 2)=\F ¢ v N

The functions I Z’; and the matrix A are called the Christoffel
symbols and the Weingarten matriz. We state the following the
fundamental theorem for surfaces, and give a proof (for a special

case) in the following section.

Theorem 2.12 (The Fundamental Theorem for Surfaces). Let
p: U 3 (u,v) = p(u,v) € R3 be a parametrization of a regular
surface defined on a domain U C R%. Then the Gauss frame
F :={pu,pv, v} satisfies the equations

oF oF
(2.15) ey = F1, 90 = FA,
F111 F112 *A% F211 F212 *Aé
2:= F121 F122 *A% , A= F221 F222 *A% )
L M 0 M N 0

where F;k (i,5,k = 1,2), AF and L, M, N are the Christoffel
symbols, the entries of the Weingarten matriz and the entries
of the second fundamental form, respectively.
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Theorem 2.13. Let U C R? be a simply connected domain, E,
F, G, L, M, N C*®-functions satisfying (2.12), and FZ];, Al the
functions defined by (2.13) and (2.14), respectively. If 2 and A
satisfies

2, — Ay = QA — AL,

there erxists a parameterization p: U — R3 of regular surface
whose fundamental forms are given by (2.11). Moreover, such a
surface is unique up to orientation preserving isometries of R3.
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FExercises

2-1 Let &(u,v) = log vu? + v? be a function defined on U =
R2\ {(0,0)}

(1) Show that £ is harmonic on U.

(2) Find the conjugate harmonic function 7 of £ on
V =R*\ {(x,0)|u<0}CU.

(3) Show that there exists no conjugate harmonic func-
tion of ¢ defined on U.
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Isothermal parameters

A Review of Complex Analysis. Let C be the complex
plane. A C'-function”’f: C 3 D € z — w = f(z) € C defined
on a domain D is said to be holomorphic if the derivative

exists for all z € D.

Fact 3.1 (The Cauchy-Riemann equation). A function f: C >
D — C is holomorphic if and only if

ou v d ou ov

o og M oy e
holds on D, where w = f(2), z = &+in, w = u+iv (i = /—-1).

(3.1)

For functions of complex variable z = £ + in, we set

32 2..L(2_,9y 9 1[0 .90
‘ 9. 2\0c ‘o) 9z 2\ac 'on)

Corollary 3.2. For a complez function f, (3.1) is equivalent to

of _
0z
Proof. Setting w = f(z) = u+iv and z = £ +in. Then the real
(resp. imaginary) part of the left-hand side of (3.3) coincides
with the first (resp. second) equation of (3.1). O

26. June, 2018. Revised: 03. July, 2018
70f class C! as a map from D C R? to R2.

(3.3) 0.
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Isothermal Coordinates.

Definition 3.3. Let f: M? — R? be an immersion of 2-manifold,
and ds? its first fundamental form. A local coordinate chart
(U; (u, v)) of M? is called an isothermal coordinate system or a
conformal coordinate system if ds® is written in the form?®

ds® = €7 (du® + dv?), o =o(u,v) € C(U).

Example 3.4. Let y(u) = (2(u), z(u)) = (acosh %, u), that is, v
is the graph x = acosh Z on the xz-plane, called the catenary.
We call the surface of revolution generated by y(u) the catenoid,
which is parametrized as

p(u,v) = (z(u) cosv, z(u) sinv, z(u)),

This parametrization of the catenoid is isothermal when a = 1.
In fact, the first fundamental form is expressed as cosh?(u/a)(du?+

a’dv?).

Definition 3.5. Two charts (Uj; (u;,v;)) (j = 1,2) of a 2-

manifold M? has the same (resp. opposite) orientation if the Ja-
O(u2,v2)
B(ul ,Ul)

M? is said to be oriented if there exists an atlas { (Uj; (u;,v;)) }
such that all charts have the same orientation. A choice of such
an atlas is called an orientation of M?2.

cobian is positive (resp. negative) on UyNUs. A manifold

8The notion of the isothermal coordinate system can be defined not only
for surfaces but also for Riemannian 2-manifolds, that is, differentiable 2-
manifolds M? with Riemannian metrics ds? (the first fundamental forms).
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Proposition 3.6. Let (u,v) be an isothermal coordinate sys-
tem of a surface. Then another coordinate system (&,7) is also
isothermal if and only if the parameter change (&,1) — (u,v)
satisfy

Ju v ou v
(34) 875—58777, 8777——5875,

where € = 1 (resp. —1) if (u,v) and (§,7n) has the same (resp.
the opposite) orientation.

Proof. If we write ds? = 27 (du?® + dv?), it holds that

ds® = €7 ((ug + vZ) d€® + 2(uguy + vevy) d€ dn + (ufl + ’U,QI) dn?).
Thus, (&,7) is isothermal if and only if

(3.5) ug + v = ug + v, Ugly + Vevy = 0.

The second equality yields (u,, v,) = e(—ve, ug) for some func-
tion €. Substituting this into the first equation of (3.5), we get
€ = +1. Moreover,

O(u, v) <u5 u ) <u§ —61)5) 9 o
= det T) = det =e(uz +u?).
A& ) ve vy v eug (g +p)

Thus, the conclusion follows. O]

Corollary 3.7. Let (u,v) is an isothermal coordinate system.
Then a coordinate system (£,n) is isothermal and has the same
orientation as (u,v) if and only if the map & + in — u + w
(i = /=1) is holomorphic.
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Proof. Equations (3.4) for ¢ = +1 are nothing but the Cauchy-
Riemann equations (3.1). O

The notion of isothermal coordinate systems are meaningful
not only for immersed surfaces but also for Riemannian mani-
folds. There exist such coordinate systems on a 2-dimensional
Riemannian manifold:

Fact 3.8 (Section 15 in 3-1). Let (M?,ds?) be an arbitrary
Riemannian manifold. Then for each p € M?, there exists an
isothermal chart containing p.

Corollary 3.9. Any oriented Riemannian 2-manifold has a
structure of Riemann surface (i.e., a complex 1-manifold) such
that for each complex coordinate z = u+iv, (u,v) is an isother-
mal coordinate system for the Riemannian metric.

Proof. Let p € M? and take a local coordinate chart (Up; (z, y))
at p which is compatible to the orientation of M?2. Then there
exists an isothermal coordinate chart (Vp; (up, vp)) at p, because
of Fact 3.8. Moreover, replacing (u,v) by (v, u) if necessary, we
can take (u,v) which has the same orientation of (x,y). Thus,
we have an atlas {(V}; (up,vp))} consisting of isothermal coor-
dinate systems. Since each chart is compatible to the orienta-
tion, the coordinate change z, = u, + v, = uq + Vg = 24 is
holomorphic. Hence we get a complex atlas {(Vp; zp) } O

The Gauss and Weingarten formulas. Let p: U — R? be
a parametrized regular surface defined on a domain U of the uv-
plane. Assume that (u,v) is an isothermal coordinate system,
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and write the first fundamental form ds? as

(3.6) ds® 1= € (du® + dv?) o€ C™(U),
that is,
(37) Py Pu = Pv - Pv = 6207 DPu P =0,

where “”7 denotes the canonical inner product of R3. Since

|pu X pv‘ = \/(pu 'pu)(pv 'pv) - (pu 'pv)2 = 620;

the unit normal vector field v can be chosen as
(38) V= 6_20(]?“ X pv)a

where “x” denotes the vector product of R3. Write the second
fundamental form of p as

(3.9) IT = Ldu® 4 2M dudv + N dv?,
where
L =puu-v, M = pyy - v, N =py, 1.

Proposition 3.10 (The Gauss formula). Under the situation
above, it holds that

Puuw = OuyPu — OyPy + LV,
Puv =  OyPy + OuPy + Ml/,
Pov

—O0yPu + OvPo + Nv.
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Proof. Since {py,py, v} is a basis of R3 for each (u,v) € U, one
can write

(310) Puu = APy + bpv + cv,

where a, b, ¢ are smooth functions on U. Here, since v is a unit
vector perpendicular to both p, and p,, we have

C=pyy-v=0L.
On the other hand, by (3.7), we have

o 1 1 o o
62 a4 = Pyu * Pu = i(pu pu)u = 5(62 )u = O'u€2 s

e = Puw - Pv = (pu 'pv)u — Pu " Puv = _%(pu 'pu)v = _UU62U'

Thus the first equality of the conclusion is obtained. The second
and third equality can be obtained in the same manner. O

Proposition 3.11 (The Weingarten formula). Under the situ-
ation above, it holds that

vy =—€ 27 (Lpy + Mp,), vy =—e 7 (Mpy, + Np,).
Proof. If we write v, = ap,, + bp, + cv, we have

€ a:Vu'pu:(V'pu)u_l/'puu:_La

eQUb:Vu'p'u:(V'pv)u_y'pUU:_M7
1
C =1y V—§(V l/)u7

and the first equality of the conclusion is obtained. The second
equality can be proven in the same manner. O
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Gauss Frame. As seen in the proofs of Proposition 3.10 and
3.11, {pu,pv, v} is a basis of R3 for each (u,v) € U. Regarding
Pu, Pv and v as column vectors, we then have a matrix-valued
function

(3.11) F := (pu,pv,v): U — GL(3,R) C M3(R).

We call such an F the Gauss frame of the surface. The following

theorem is an immediate consequence of Propositions 3.10 and
3.11:

Theorem 3.12. Let p: U — R3 be a regular surface defined on
a domain U in the uv-plane, and denote by v the unit normal
vector field of it. Assume that (u,v) is an isothermal coordinate
system, and the first and second fundamental forms are written
as

(3.12) ds? = €*?(du® +dv?®), IT = Ldu®+2M dudv+ N dv?.

Then the Gauss frame F := (pu,ps,V) satisfies the following
system of linear partial differential equations:

oOF OF
(3.13) 7 = F{2, % = FA,

Oy 0y —e 2L

N:=\|-0, o0, —e M|,
L M 0
oy —0, —e M

Ai=|oy, o0, —e2N|,
M N 0
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Gauss-Codazzi equations. The coefficients {2 and A in (3.13)
must satisfy the integrability condition (2.2) in Lemma 2.2.

Lemma 3.13. The matrices 2 and A in (3.13) satisfy
2, — Ay — QA+ A2 =0
if and only if
(3.14) Ouu + oo + €27 (LN — M?) =0
and
(3.15) Ly—M, = 0o(L+N)  and  Ny—M, = oy (L+N).

Proof. A direct computation. O

Thus we have

Theorem 3.14 (The Gauss and Codazzi equatoins). Letp: U —
R3 be a reqular surface defined on a domain U in the uv-plane,
and denote by v the unit normal vector field of it. Assume that
(u,v) is an isothermal coordinate system, and the first and sec-
ond fundamental forms are written as (3.12). Then (3.14) and
(3.15) hold.

Remark 3.15. The equations (3.14) and (3.15) are called the
Gauss equation and the Codazzi equations, respectively. The
Gauss equation is often referred as Gauss’ Theorema Egregium.
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Fundamental Theorem for Surfaces. The following is the
special case of the fundamental theorem for surfaces (Theo-
rem 2.13):

Theorem 3.16. Let U C R? be a simply connected domain, and
let o, L, M, N be C*-functions satisfying (3.14) and (3.15).
Then there exists a parametrization p: U — R? of reqular sur-
face whose fundamental forms are given by (3.12). Moreover,
such a surface is unique up to orientation preserving isometries
of R3.

Proof. By Lemma 3.13, Theorem 2.3 yields that there exists a
matrix-valued function F: U — M;3(R) satisfying (3.13) with
the initial condition
eoluown) 0
(3.16) F(ug,vg) = 0 e (uosv0) ,
0 0 1

for a fixed point (ug,v9) € U. Let a, b, ¢ be vector-valued
functions such that F = (a, b, ¢). Since

a, =o,a+o,b+ Mc=b,,

the vector-valued 1-form w := adu + bdv is closed. Then by
Poincaré’s lemma (Theorem 2.6), there exists a vector-valued
function p: U — R? such that dp = w:

Pu = @, p'u:b~

Let
F:= (e %a,e ?b,c).
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Then it holds that

Fo=FO,  F =FA

. 0 Ov —e 7L
=1 —0o, 0 —e M |,
e °L e "M 0
. 0 -0, —e¢ °M

A= ou 0 —e N

e M e °N 0

with F(ug,v9) = id. Then by Theorem 2.3, F € SO(3) for all
(u,v) € U. This means that
pu'pu:a'a:€207

Pu -V =Dy V=0, v-v=1,

where v := ¢. Hence the first fundamental form of p is ds? =
€27 (du® + dv?) and v is the unit normal vector field of p. More-
over, since

puu'V:au'CZL7 puv'V:Mapv'u'V:N-

Thus, p is the desired immersion.

Next, we prove the uniqueness. Let p be an immersion with
(3.12). Then the Gauss frame F satisfies the equation (3.13) as
well as F. Here, |py(ug,v0)| = e7#0:v0) |5, (ug, vo)| = e7(M0:v0),
and py, Py, ¥ are mutually perpendicular. Thus, by a suitable ro-
tation in R3, we may assume JF(ug, vo) coincides with F(ug,vo)
without loss of generality. Then F=F by the uniqueness part

Pu-py=a-b=0, Pu-Py=b-b=e
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of Theorem 2.3, and dp = dp holds. Hence p = p up to additive

constant vector.

O
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Ezxercises
3-1% Prove Theorem 3.14.

3-2" Let (z(u),2(u)) be a curve on the zz-plane parametrized
by the arc-length parameter (that is, (i) + (3)? = 1).
Find an isothermal parameter of the surface of revolution

p(u,v) = (z(u) cosv, z(u) sinv, z(u)).
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The Hopf Differential

Complexification of vector spaces. Let V' be an n-dimen-
sional real vector space. By extending the coefficients to com-
plex numbers, we obtain an n-dimensional complex vector space
VC, called the complexification of V. More precisely, take a ba-
sis {@1,...,a,} of V. Then VC is the complex vector space
generated by {a;}:

VC={1‘1G1+"'+$nan|l‘jEC (j=1,...,n)}

4.1
(41) = Spanc{ay,...,a,}.

This expression does not depend on the choice of {a;}. In fact,
let {b1,...,b,} be another basis of V and A € GL(n,R) the
change of bases {a;} and {b;}:

(@1, an) = (br,....ba) Al

Since
1
r:=z1a1+ -+ 2pa, = (a1,...,a,) | :
Ln
Y1 Y1 1
= (b1,...,by) | : ]l =AL ,
Yn Yn Tn

we have that Spanc{b;} = Spanc{a;}.
03. July, 2018.
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The dual vector space W* of a real (complex) vector space
W is the set of linear functions on W:

W*:={o: W — R|R-lincar} (resp.{o: W — C|C-linear}).

It is easy to see that (W®)* = (W*)C.
The complexification V® is also interpreted as a 2n-dimensional
real vector space spanned by

ai,...,a,; iai,...,ia,,

where i = v/—1. Under such a situation, V is an n-dimensional
subspace of VC as a real vector space.

Example 4.1. The complexification of R™ is C". In fact, C* =
Spanc{ei,...,e,}, where {e;} is the canonical basis of R™.

2-dimensional case. We assume that V' is a real vector space
of dimension 2, and take a basis {a1,as}. Then the dual basis
{a1, a2} of V* is defined by

e =tn={y (20
and
(V*)® = Spanc (o, az) = Spanc(8B, B),
where B
8= ay + ias, 8= ay — ias.
We set

1 . = 1 .
b= i(al—lag), b:= §(a1 +ias).
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Then {b, b} is a basis of V€ whose dual basis is {3, 5}.
Then a real vector z1a1 + x2a2 € V is identified with

£b+ &b = 2 Re(ED),

where ¢ := x, + iz and € is its complex conjugate.

Compexified tangent spaces of Riemann surfaces. Let
S be a Riemann surface, that is, a complex 1-manifold, and take
a local complex coordinate neighborhood (U;z) around p € S.
Then (u,v) (# = u +1iv) is a real coordinate system on U C S.

The tangent space TS is a real vector space spanned by
{(0/0u) 4, (0/0v),}, and {(du),, (dv),} is the dual basis of it.
Then, as seen in the previous paragraph, the complexification
of (T,,5)¢ and its dual (7;*S)Cis obtained as

0 0

Cc _ . _
42 (&5 ‘&mw{<&);<%>J
o _1(9 9\ 9 _1
9z 2\ou ‘ov) 9z 2

(4.3)  (T35)° = Span ¢ {(d2)., (d2)..}
dz :=du+idv, dz:=du — idv.

In particular {(dz), (dZ), } is the dual basis of {(0/0z), (0/0%Z) .}

Lemma 4.2. Let (U;z = u+iv) be a complex coordinate neigh-
borhood of a Riemann surface S. Then a function f: U — C is
holomorphic if and only if

1)
0z \ 2\9du v e
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Proof. We write f(u,v) = &(u,v) + in(u,v), where £ and 7 are
real-valued function on U. Then

of _ o(€+in) 9 +in)

9z Ou ov

(96 On [ On  0¢

B <8u a 81}) +1(8u+8v ’
which vanishes if and only if the map (u,v) — (§,n) satisfies
the Cauchy-Riemann equation. O

2

Definition 4.3.

(T$S’)(1’O) := Span ¢{(dz).} C (T 9)%,
(T,S) Y := Span ¢{(d2),} C (T3 9)°C.

Lemma 4.4. (T*S)¢ = (T;8)19 & (T 9)OV. Moreover such
a decomposition does not depend on a choice of complex coordi-
nate systems.

Proof. Since (dz), and (dz), span (T(S))C, the first part is
obtained. Let w be another complex coordinate. Then one can
easily show that

ow ow ,_ _ 0w ow ,_

Since the coordinate change z — w is holomorphic, Lemma 4.2
yields that L
ow ow  Ow

-0 5T 0
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Hence, by definition of complex derivation,

dw _ dw
dwzadz, dw—adz
hold. Then the second part of the conclusion follows. O

Symmetric 2-differentials on Riemann surfaces. A sym-
metric 2-form on a real vector space V is a bilinear form

c:VxV—R

such that o(x,y) = o(y, x) holds for all &, y € V. A symmetric
2-tensor or a symmetric 2-differential on a smooth manifold S
is a correspondence

0: S 5 x — a symmetric 2-form o, on 7,5

such that o(X,Y): S — R is smooth for each smooth vector
fields X and Y on S. Taking a local coordinate system (u,v)
around p, a symmetric 2-tensor o is expressed as

(44) o=s11 du® 4 2515 du dv + S99 dv>

s11 := 0 (0/0u,d/0u), S99 1= 0 (0/0v,0/0v),
S12 = S21 = a(é)/@u,a/av) '

Example 4.5 (Surfaces in the Euclidean space). Let p: S — R3
be an immersion of a Riemann surface S into R3. Since S is
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orientable,? there exists a (globally defined) unit normal vector
field v which is considered as a map v: S — 5% C R3, called the
Gauss map.

The first fundamental form ds? and the second fundamental
form II are defined as

ds*(v,w) := dp(v) - dp(w) and II(v,w) := —dp(v) - dv(w),
respectively, for v, w € TS (x € S). Then both ds? and II are
symmetric 2-differentials on S.

Since dp(9/0u) = py, ..., and
Pu " Vuy = (pu 'V)ufpuu'ya
Py Vy =Py Vy = —Puv Vs Py Vy = —Poyv "V,

the definitions of the fundamental forms here coincide with those
as (2.11) in Section 2.

Let (U;z = u+1iv) be a complex chart of a Riemann surface
S. By virtue of (4.3), one can rewrite (4.4) as

(45) g = 520 d22 + 2§11 dzdz + §02d22,
where!?
_ 811 — S22 — 2812
S20 = 4 ’
5o Su—sndt 2is1o 5. Sutsm
0= —F— 1n=—F-"
0 4 ) 4

9 A Riemann surface (more generally, a complex manifold) is necessarily
orientable. In fact, a holomorphic coordinate change z = u+iv — w = £+in
has positive Jacobian because of the Cauchy-Riemann equation.

10Although the form (4.5) might be written as o© because it is a com-
plexification of the original o, we do not distinguish them in this notebook.
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Definition 4.6. Let o be a symmetric 2-differential as in (4.5).
Then we set

(20 .= 520d22, A 2611dz dz, (02 .= 2502d22,

and call them the (2,0)-part, (1,1)-part, and (0, 2)-part of o,
respectively.

Similar to Lemma 4.4,
Lemma 4.7. The (2,0)-part, (1,1)-part and (0,2)-part of sym-

metric 2-differnetials are independent on choice of complex co-
ordinates.

Hopf differentials.

Definition 4.8. An immersion p: S — R? is said to be con-
formal if each complex coordinate z = u + iv corresponds to
isothermal coordinate system (u,v).

In the situation of Definition 4.8, the first fundamental form
ds? is written as

(4.6) ds® = €27 (du® + dv?) = €*° dz dz.
Thus we have

Lemma 4.9. An immersion p: S — R3 of a Riemann surface
S is conformal if and only if the first fundamental form has no
both (2,0)-part and (0, 2)-part.
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Definition 4.10. Let p: S — R? be a conformal immersion
of a Riemann surface of S. The (2,0)-part @ of the second
fundamental form is called the Hopf differential.

Lemma 4.11. If the first and second fundamental forms are in
the form

ds* = €27 (du® + dv?) = €*° dz dz,

(4.7) ) )
II = Ldu®+2M dudv + N dv

in the complex coordinate z = u + iv, the Hopf differential Q
and the mean curvature H are expressed as

6—20

2

(4.8) Q:i((L—N)—ziM)dz% H = (L+N).

Proof. The equation ?? yields the expression of the Hopf differ-
ential. Since the representation matrix of the first fundamental
form is €27 id, then the coefficients of the Weingarten matrix
(cf. (??) in Section 2) are €27 times of L, M and N. Since the
2H is the trace of the Weingarten matrix, the expression of the
mean curvature holds. O

Definition 4.12. Let p: S — R3 be an immersion of a 2-
manifold S. A point z € S is called an umbilic point if the
first fundamental form ds? and the second fundamental form IT
are proportional at the point p. If all points of S are umbilic
points, p is called totally umbilic.

Proposition 4.13 (cf. §7 in [3-1]). The image of a totally um-
bilic immersion is a part of a plane or a round sphere.
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Proof. Since the first and second fundamental forms are pro-
portional, the Weingarten matrix (??) is a scalar multiplication
of id: A = \id on a coordinate neighborhood (u,v). Then the
derivatives of the unit normal vector field satisfy

Uy = 7Apu7 Uy = 7>‘pv~
Differentiating these, we have

Vo = —ApDu + APuvs
Vpu = —AuPov + ADyu-

This implies d\ = 0 on a coordinate neighborhood, and thus
A must be constant. When A\ = 0, v is constant vector, and
then the image of p is a part of the plane. If A £ 0, p+ v/ is
constant. This means that the image lies on a sphere of radius
1/IAl. O

The Gauss and Codazzi equations.

Theorem 4.14. Let p: S — R? be a conformal immersion of
a Riemann surface S, and let ds*, H and Q be the first fun-
damental form, the mean curvature and the Hopf differential,
respectively. Take a complex coordinate z = u + iv of S, and
write
ds®> =e* dzdz, Q= qdz>.

Then the Gauss equation (3.14) and the Codazzi equations (3.15)
are equivalent to

0%c Cop - 1

dq €* 0H
4. —e*H? = =
(49)  gogz T Taat e 0,

0z 4 0z’
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respectively.

Proof. By (4.8),

(L—=N)*+4M?) = % ((L+ N)* —4(LN — M?))

® 1

020z 4 \ou2  ow?)’

the Gauss equation (3.14) is equivalent to the first equation of
(4.9). The second equation follows from (3.15). O

Corollary 4.15. Let p: S — R3 be a conformal immersion
of a Riemann surface S with constant mean curvature. Then
the Hopf differential Q = qdz? is holomorphic, that is, q is
a holomorphic function in z, where z is an arbitrary complex
coordinate on S.

Proof. When dH = 0, the second equation of (4.9) implies ¢z =
0. O

Since zeros of holomorhpic function are isolated unless the
function is identically zero, we have

Corollary 4.16. An umbilic point of a constant mean curvature
surface is isolated unless it is totally umbilic.



47 (20180703) MTH.B402; Sect. 4

References

[4-1] O0O0DDOO0OO0O0O0DODO0O0OO0O0DDDODOO0O0020140

[4-2] Masaaki Umehara and Kotaro Yamada, Differential Geometry of
Curves and Surfaces, (trasl. by Wayne Rossman), World Scientific,
2017.

MTH.B402; Sect. 4 (20180703) 48

Exercises
4-1" Let S be a Riemann surface, and let
p: S — R?

be a conformal immersion of constant mean curvature
without umbilic points. Then for each z € D, there exists
a complex coordinate z such that

ds® = * dzdz, Q = dz>.



