The Laplacian

Riemannian 2-manifolds. Let Σ be a 2 dimensional manifold. A Riemannian metric $d s^{2}$ of Σ is a collections of (positive definite) inner product of the tangent space $T_{p} \Sigma$ of Σ at p, here p runs over whole Σ. Then, for each $p \in \Sigma,\left(d s^{2}\right)_{p}$ is an inner product of the vector space $T_{p} \Sigma$. Let $(U ; u, v)$ be a local coordinate system of Σ, then $\{\partial / \partial u, \partial / \partial v\}$ is a field of bases on U, namely, $\left\{(\partial / \partial u)_{p},(\partial / \partial v)_{p}\right\}$ is a basis of $T_{p} \Sigma$ for each $p \in U$. We write the matrix representation of $d s^{2}$ with respect to such a field of bases as

$$
\widehat{I}:=\left(\begin{array}{ll}
E & F \tag{5.1}\\
F & G
\end{array}\right)
$$

$$
E=\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial u}\right),
$$

where

$$
\begin{aligned}
& F=\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right), \\
& G=\left(\frac{\partial}{\partial v}, \frac{\partial}{\partial v}\right) .
\end{aligned}
$$

Here, (,) denotes the inner product induced by $d s^{2}$. The Riemannian metric $d s^{2}$ is said to be smooth if E, F and G in (5.1) are smooth functions in (u, v). Note that this condition is independent of a choice of coordinate system. Throughout this section, Riemannian metrics are assumed to be smooth. Under the situation as in (5.1), we write

$$
\begin{equation*}
d s^{2}:=E d u^{2}+2 F d u d v+G d v^{2} \tag{5.2}
\end{equation*}
$$

Lemma 5.1. Let $d s^{2}$ in (5.2) be a Riemannian metric. Then

$$
E>0, \quad G>0, \quad \text { and } \quad E G-F^{2}>0
$$

holds.
07. May, 2018.

Proof. Since $d s^{2}$ is positive definite,

$$
(\boldsymbol{v}, \boldsymbol{v})=E a^{2}+2 F a b+G b^{2}>0
$$

holds for an arbitrary

$$
v:=a \frac{\partial}{\partial u}+b \frac{\partial}{\partial v}
$$

In particular, letting $(a, b)=(1,0)$ and $(0,1)$, we have $E, G>0$. Moreover, when $(a, b)=(-F, E)$, it holds that

$$
0<E F^{2}-2 F^{2} E+E^{2} G=E\left(E G-F^{2}\right)
$$

Then we have the conclusion.
Assume the manifold Σ is oriented, and take a coordinate system ($U ; u, v$) on Σ which is compatible of the orientation. We call the differential 2-form

$$
\begin{equation*}
d A:=\sqrt{E G-F^{2}} d u \wedge d v \tag{5.3}
\end{equation*}
$$

the area element.
Lemma 5.2. The area element (5.3) does not depend on a choice of coordinate system compatible to the orientation.

Proof. Let $(V ; \xi, \eta)$ be another coordinate system such that the intersection with $(U ; u, v)$ is not empty. Then

$$
\left(\frac{\partial}{\partial \xi}, \frac{\partial}{\partial \eta}\right)=\left(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right) J, \quad J:=\left(\begin{array}{ll}
\frac{\partial u}{\partial \xi} & \frac{\partial u}{\partial \eta} \tag{5.4}\\
\frac{\partial v}{\partial \xi} & \frac{\partial v}{\partial \eta}
\end{array}\right)
$$

here we call J the Jacobian matrix of the coordinate change $(\xi, \eta) \mapsto(u, v)$. If we write

$$
d s^{2}=\widetilde{E} d \xi^{2}+2 \widetilde{F} d \xi \eta^{2}+\widetilde{G} d v^{2}
$$

E, F, G as in (??) and $\widetilde{E}, \widetilde{F}, \widetilde{G}$ are related as

$$
\left(\begin{array}{ll}
E & F \tag{5.5}\\
F & G
\end{array}\right)={ }^{t} J\left(\begin{array}{cc}
\widetilde{E} & \widetilde{F} \\
\widetilde{F} & \widetilde{G}
\end{array}\right) J
$$

On the other hand,

$$
\begin{equation*}
\binom{d \xi}{d \eta}=J\binom{d u}{d v} \tag{5.6}
\end{equation*}
$$

Noticing det $J>0$ because (u, v) and (ξ, η) are compatible to the orientation, the conclusion follows by these equalities.
Example 5.3. Let Σ is an oriented 2-manifold and $f: \Sigma \rightarrow \mathbb{R}^{3}$ an immersion. Then, for each $p \in \Sigma$, the restriction canonical inner product "." of \mathbb{R}^{3} to $d f\left(T_{p} \Sigma\right) \subset \mathbb{R}^{3}$ gives an inner product of $T_{p} \Sigma$, by identifying $T_{p} \Sigma$ and $d f\left(T_{p} \Sigma\right)$. Thus, we have the Riemannian metric $d s^{2}$ induced by the immersion f which is nothing but the first fundamental form as in (1.2).
L^{2}-inner product for smooth functions. product Let $\left(\Sigma, d s^{2}\right)$ be a Riemannian manifold, and assume that the manifold is oriented, for the sake of simplicity. We denote

$$
\begin{align*}
& C^{\infty}(\Sigma):=\text { the set of smooth functions on } \Sigma \\
& C_{0}^{\infty}(\Sigma):=\left\{\varphi \in C^{\infty}(\Sigma) ; \operatorname{supp} \varphi \subset \Sigma \text { is compact }\right\} \tag{5.7}
\end{align*}
$$

where $\operatorname{supp} f=\{p \in \Sigma ; f(p) \neq 0\}$ is the support of f. Then $C_{0}^{\infty}(\Sigma)$ is a linear subspace of the vector space $C^{\infty}(\Sigma)$.
Definition 5.4. The L^{2}-inner product of $C_{0}^{\infty}(\Sigma)$ is defined as

$$
\langle\varphi, \psi\rangle:=\int_{\Sigma} \varphi \psi d A \quad\left(\varphi, \psi \in C_{0}^{\infty}(\Sigma)\right)
$$

where $d A$ is the area element as in (5.3).
Then \langle,$\rangle is an inner product of C_{0}^{\infty}(\Sigma)$.
L^{2}-inner product of one forms. We denote

$$
\Lambda^{1}(\Sigma):=\text { the set of smooth } 1 \text {-forms on } \Sigma .
$$

On a local coordinate system $(U ; u, v), \alpha, \beta \in \Lambda^{1}(\Sigma)$ are expressed as

$$
\alpha=\alpha_{1} d u+\alpha_{2} d v, \quad \beta=\beta_{1} d u+\beta_{2} d v
$$

Then by (5.5) and (5.6),

$$
(\alpha, \beta):=\left(\alpha_{1}, \alpha_{2}\right)\left(\begin{array}{ll}
E & F \tag{5.8}\\
F & G
\end{array}\right)^{-1}\binom{\beta_{1}}{\beta_{2}}
$$

does not depend on a choice of coordinate system.
Definition 5.5. We denote

$$
\Lambda_{0}^{1}(\Sigma):=\left\{\alpha \in \Lambda^{1}(\Sigma) ; \operatorname{supp} \alpha \subset \Sigma \text { is compact }\right\}
$$

and define the L^{2}-inner product of one forms as

$$
\langle\alpha, \beta\rangle:=\int_{\Sigma}(\alpha, \beta) d A \quad\left(\alpha, \beta \in \Lambda_{0}^{1}(\Sigma)\right)
$$

Definition 5．6．For $\alpha \in \Lambda^{1}(\Sigma)$ ，we define
（5．9）$\quad \delta \alpha:=-\frac{1}{\sqrt{g}}\left[\left(\frac{G \alpha_{1}-F \alpha_{2}}{\sqrt{g}}\right)_{u}+\left(\frac{-F \alpha_{1}+E \alpha_{2}}{\sqrt{g}}\right)_{v}\right]$ ，
where $\alpha=\alpha_{1} d u+\alpha_{2} d v, E, F$ and G are as in（5．1），and $g:=E G-F^{2}$ ．
Lemma 5．7．The right－hand side of（5．9）does not depend on a choice of coordinate system．
Proposition 5．8．For $\varphi \in C^{\infty}(\Sigma)$ and $\alpha \in \Lambda_{0}^{1}(\Sigma)$ ，it holds that （5．10）

$$
\langle\varphi, \delta \alpha\rangle=\langle d \varphi, \alpha\rangle
$$

Proof．It is sufficient to show the equality when $\operatorname{supp} f$ and $\operatorname{supp} \alpha$ are contained in a local coordinate system $(U ; u, v)$ ．In this case，

$$
\begin{aligned}
(d \varphi, \alpha) d A & =(d \varphi, \alpha) \sqrt{g} d u \wedge d v \\
& =\frac{1}{\sqrt{g}}\left(\varphi_{u}\left(G \alpha_{1}-F \alpha_{2}\right)+\varphi_{v}\left(-F \alpha_{1}+E \alpha_{2}\right)\right) \\
& =d \omega+\delta \alpha d A
\end{aligned}
$$

hold for some one form ω ，proving the conclusion．

The Laplacian

Definition 5．9．The map $\Delta_{d s^{2}}: C^{\infty}(\Sigma) \rightarrow C^{\infty}(\Sigma)$ defined by

$$
\Delta_{d s^{2}} \varphi:=-\delta d \varphi \quad\left(\varphi \in C^{\infty}(\Sigma)\right)
$$

is called the Laplacian with respect to the Riemannian metric $d s^{2}$ ．

Proposition 5．10．For each $\varphi, \psi \in \Lambda_{0}^{1}(\Sigma)$ ，

$$
\int_{\Sigma} \varphi \Delta_{d s^{2}} \psi d A=-\langle d \varphi, d \psi\rangle
$$

holds．
Proof．By Proposition 5．8，

$$
\begin{aligned}
\int_{\Sigma} \varphi \Delta_{d s^{2}} \psi d A & =\left\langle\varphi, \Delta_{d s^{2}} \psi\right\rangle=-\langle\varphi, \delta d \psi\rangle=-\langle d \varphi, d \psi\rangle \\
& =-\langle d \varphi, d \psi\rangle
\end{aligned}
$$

holds．
A function $\varphi \in C^{\infty}(\Sigma)$ satisfying $\Delta_{d s^{2}} \varphi=0$ is called a harmonic function．

Corollary 5．11．A harmonic function on a compact，connected Riemannian manifold is a constant．
Proof．Since Σ is compact，$C_{0}^{\infty}(\Sigma)=C^{\infty}(\Sigma)$ ．If φ is harmonic，

$$
0=\int_{\Sigma} \varphi \Delta_{d s^{2}} \varphi=-\langle d \varphi, d \varphi\rangle
$$

and hence $d \varphi=0$ ．

References

［5－1］梅原雅顕•山田光太郎：曲線と曲面—微分幾何的アプローチ（改訂版），裳華房，2014．

Exercises

5-1 ${ }^{\mathrm{H}}$ Consider the situation in Example 5.3, that is, $f: \Sigma \rightarrow \mathbb{R}^{3}$ be an immersion with the first fundamental form $d s^{2}$.
We write $f=\left(f_{1}, f_{2}, f_{3}\right)$, where f_{j} 's $(j=1,2,3)$ are smooth functions defined on Σ. Then

$$
\Delta_{d s^{2}} f:=\left(\Delta_{d s^{2}} f_{1}, \Delta_{d s^{2}} f_{2}, \Delta_{d s^{2}} f_{3}\right)
$$

is a vector valued function defined on Σ.
(1) Let $(U ; u, v)$ be a local coordinate system of Σ. Show that $\Delta_{d s^{2}} f$ is perpendicular to both f_{u} and f_{v}.
(2) Show that

$$
\Delta_{d s^{2}} f=2 H \nu
$$

where H and ν are the mean curvature and the unit normal vector field, respectively.
(3) An immersion f is said to be minimal if the mean curvature vanishes identically (see Definition 1.2). Prove that there are no compact minimal surface without boundary.

5-2 ${ }^{\mathrm{H}}$ Let $\left(\Sigma, d s^{2}\right)$ be a Riemannian 2-manifold. A coordinate system $(U ; u, v)$ is said to be isothermal or conformal if the metric $d s^{2}$ is written as

$$
\begin{equation*}
d s^{2}=e^{2 \sigma}\left(d u^{2}+d v^{2}\right) \tag{5.11}
\end{equation*}
$$

where σ is a smooth function defined on U.
(1) Compute $\Delta_{d s^{2}} \varphi$ with respect to the coordinate system (u, v).
(2) Let $(V ; \xi, \eta)$ and $(U ; u, v)$ are isothermal coordinate systems. Then the coordinate change

$$
(\xi, \eta) \longmapsto(u(\xi, \eta), v(\xi, \eta))
$$

satisfy

$$
\Delta_{d s^{2}} u=\Delta_{d s^{2}} v=0
$$

that is, coordinate changes between isothermal coordinate systems are harmonic.

