The Laplacian

Riemannian 2-manifolds. Let ¥ be a 2 dimensional mani-
fold. A Riemannian metric ds® of ¥ is a collections of (positive
definite) inner product of the tangent space 7,3 of 3 at p, here
p runs over whole X. Then, for each p € ¥, (ds?), is an inner
product of the vector space T,X. Let (U;u,v) be a local coor-
dinate system of X, then {0/0u,d/dv} is a field of bases on U,
namely, {(0/0u),, (0/0v),} is a basis of T,% for each p € U.
We write the matrix representation of ds? with respect to such
a field of bases as

~ E F bE= (%’%)7
(5.1) I = (F G) , where F = (%, %) ,
G= (55

Here, ( , ) denotes the inner product induced by ds®. The
Riemannian metric ds? is said to be smooth if E, F and G in
(5.1) are smooth functions in (u,v). Note that this condition is
independent of a choice of coordinate system. Throughout this
section, Riemannian metrics are assumed to be smooth. Under
the situation as in (5.1), we write

(5.2) ds® := Edu® + 2F dudv + G dv®.
Lemma 5.1. Let ds? in (5.2) be a Riemannian metric. Then
E >0, G >0, and EG—-F?>0

holds.
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Proof. Since ds? is positive definite,
(v,v) = Ea® + 2Fab + Gb*> > 0

holds for an arbitrary

In particular, letting (a,b) = (1,0) and (0, 1), we have E, G > 0.
Moreover, when (a,b) = (—=F, E), it holds that

0 < EF? - 2F?E + E°G = E(EG — F?).
Then we have the conclusion. ]

Assume the manifold ¥ is oriented, and take a coordinate
system (U;u,v) on 3 which is compatible of the orientation.
We call the differential 2-form

(5.3) dA:=vEG — F2du A dv

the area element.

Lemma 5.2. The area element (5.3) does not depend on a
choice of coordinate system compatible to the orientation.

Proof. Let (V;£,n) be another coordinate system such that the
intersection with (U;u,v) is not empty. Then

o 0 o 0 u  du
5.4 —, | = =, = J) J = 85 BZ ,
(5.4) (ag an> <8u 31)) (gg gn>
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here we call J the Jacobian matriz of the coordinate change
(&, 1) — (u,v). If we write

ds® = Ed€&? + 2F dén? + G dv?,
E, F,G asin (??) and E, ﬁ, G are related as

(5.5) (? g) =1 (g g) J.

On the other hand,

oo ()

Noticing det J > 0 because (u,v) and (§,7n) are compatible to
the orientation, the conclusion follows by these equalities. [

Example 5.3. Let ¥ is an oriented 2-manifold and f: ¥ — R3
an immersion. Then, for each p € 3, the restriction canonical
inner product “” of R3 to df(T,¥) C R? gives an inner product
of T,X, by identifying T,X and df(T,X). Thus, we have the
Riemannian metric ds® induced by the immersion f which is
nothing but the first fundamental form as in (1.2).

L?-inner product for smooth functions. product Let (X, ds?)

be a Riemannian manifold, and assume that the manifold is ori-
ented, for the sake of simplicity. We denote
C*°(%) := the set of smooth functions on 3,

5.7
(57) C5o () :={p € C™(X); supp p C X is compact },
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where supp f = {p € &; f(p) # 0} is the support of f. Then
C§°(X) is a linear subspace of the vector space C*°(X).

Definition 5.4. The L%-inner product of C§°(X) is defined as

(o, 0) = / ppdA (o € C(E)

where dA is the area element as in (5.3).

Then (, ) is an inner product of C§°(X).

L?-inner product of one forms. We denote
A (X)) := the set of smooth 1-forms on ¥.

On a local coordinate system (U;u,v), a, 8 € A(X) are ex-
pressed as

a = oy du + asg dv, B = B1du+ B dv.
Then by (5.5) and (5.6),

59 @a=even (2 ) ()

does not depend on a choice of coordinate system.

Definition 5.5. We denote
A§(2) :={a € A(X); suppa C ¥ is compact},

and define the L2-inner product of one forms as

(0, B) = / (. B)dA (B € AY(D)).
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Definition 5.6. For a € A*(X), we define

(5.9) ba:= _\}5 [(Gal\/gFQQ)u + (Fal\;gr EOQ)j )

where @ = ajdu + agdv, E, F and G are as in (5.1), and
g:=EG — F2.

Lemma 5.7. The right-hand side of (5.9) does not depend on
a choice of coordinate system.

Proposition 5.8. For ¢ € C*(X) and o € A}(X), it holds that

(5.10) (0, 6a) = (dp, a)

Proof. 1t is sufficient to show the equality when supp f and
supp « are contained in a local coordinate system (U;u,v). In
this case,

(dp, ) dA = (dp, a)\/gdu A dv

1
= % ((Pu(GOél — FO[Q) + (,01;(*FOZ1 + EO[Q))
=dw+ dadA
hold for some one form w, proving the conclusion. O

The Laplacian
Definition 5.9. The map Agy,2: C°(X) — C°(X) defined by
Ags2p = —ddp (€ CF(X))

is called the Laplacian with respect to the Riemannian metric
ds?.

MTH.B402; Sect. 5 (20180508) 38

Proposition 5.10. For each ¢, ¢ € A}(%),

/E pAgsrtp dA = —(dyp, dv)

holds.

Proof. By Proposition 5.8,

/2 pAa dA = (p, Aggah) = —(ip, 6dp) = —(dip, dup)
= _<d<)07 d¢>
holds. O

A function ¢ € C°(X) satisfying Age2p = 0 is called a
harmonic function.

Corollary 5.11. A harmonic function on a compact, connected
Riemannian manifold is a constant.

Proof. Since ¥ is compact, C§°(X) = C*(X). If ¢ is harmonic,
0= /Esoﬂdsw = —(dp,dyp),

and hence dyp = 0. O
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Ezxercises

5-1H

5-2H

Consider the situation in Example 5.3, that is, f: ¥ — R3
be an immersion with the first fundamental form ds?.

We write f = (f1, f2, f3), where f;’s (j = 1,2,3) are
smooth functions defined on ¥. Then

Age2 [ 1= (Ags2 f1, Aas2 f2, Aas2 f3)
is a vector valued function defined on X.

(1) Let (U;u,v) be alocal coordinate system of 3. Show
that Ag,2 f is perpendicular to both f, and f,.

(2) Show that

AdSQf = 2HV,

where H and v are the mean curvature and the unit
normal vector field, respectively.

(3) Animmersion f issaid to be minimal if the mean cur-
vature vanishes identically (see Definition 1.2). Prove
that there are no compact minimal surface without
boundary.

Let (X,ds?) be a Riemannian 2-manifold. A coordinate
system (U;u,v) is said to be isothermal or conformal if
the metric ds? is written as

(5.11) ds® = e* (du® + dv?),

where ¢ is a smooth function defined on U.
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(1) Compute Ay,2p with respect to the coordinate sys-
tem (u,v).

(2) Let (V;¢&,n) and (U;u,v) are isothermal coordinate
systems. Then the coordinate change

(& m) — (u(&, ), v(&,m))

satisfy
Ad82u = Ads2v = 0,

that is, coordinate changes between isothermal coor-
dinate systems are harmonic.



