Delaunay Surfaces

Constant mean curvature surfaces of revolution. As
seen in Theorem 3.6 in the previous section, we have

Theorem 4.1. Let H and a be arbitrary constants with
(4.1) H>0 and 2Ha+1> 0,
and let v(s) = (x(s),y(s)) with

1
y(s) = m (2Ha+1)2 —2(2Ha+ 1)cos2Hs + 1,

(4.2)
du.

_ [7(2Ha+1)cos2Hu — 1
| 2HTy(u)

Then the surface of revolution with respect to the x axis with
profile curve v has constant mean curvature H. Conversely,
constant mean curvature surfaces of revolution are obtained in
this manner.

Proof. Take H # 0 and a arbitrarily. Then one can easily show
that the surface of revolution with profile curve (x(s),y(s)) has
constant mean curvature H.

On the other hand, in the proof of Theorem 3.6, we have
solved the differential equation (3.8) with initial condition

(#(0),5(0)) = (0,a), ((0),9(0)) = (1,0), #(0) = £(0) =0,
01. May, 2018.
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where a is a positive constant. In this case, (3.6) yields that
2H = Kk — z <0,
Y

and
2Ha+1=ak(0) £0.

Hence, an arbitrary (non-zero) constant mean curvature surface
of revolution is obtained by one of the expression (4.2) for H < 0
and 2Ha +1 £ 0.

Here, a surface obtained by replacing (H, a, s) by (—H, —a, —s)
in the expression (4.2) is congruent to the original one. Hence
we may assume H > 0 without loss of generality. In addition,
the change

1
(H,a,s) s (H',a',s') = (H —a— 5+ 22)

keeps the curve unchanged, and 2H'a’+1 = —(2Ha+1). Thus,
we may assume 2Ha + 1 2 0 without loss of generality. O
Special Cases. Let H > 0 be a positive constant.

Example 4.2 (The circular cylinder). When a = —1/(2H),
(4.2) turns to be

z(s) = —s, y(s) = %

The corresponding surface is a circular cylinder of radius 1/(2H).



27 (20180508) MTH.B402; Sect. 4

\J

Figure 1: Example 4.2

Example 4.3 (The spheres). When a =0, (4.2) turns to be

| sin Hs|

r(s) = —|sin Hs|,
ils) = —|sinHs|,  yls) =
Integrating the first equation with respect to s, we have

n+1
H b

1
SC(S):ECOSHT— (Hs=nmw+7,n€Z,7el0,m)).

The corresponding surface has singularities on s = nw (n € Z),
and its image is a sequence of infinitely many spheres with radius
1/H centered at 37 (n € Z).

Generic Cases: Unduloids and Nodoids If 2Ha + 1 ¢
{0,1}, y(s) in (4.2) defined on R because

(2Ha +1)* —2(2Ha + 1) cos2Hs + 1
> (2Ha +1)? —2(2Ha+ 1) + 1 = (2Ha)* > 0,
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Figure 2: Example 4.3

and obviously 27 /H-periodic. On the other hand, z(s) in (4.2)
has the following periodicity:

x(s+i§) —2(s) + ¢,

/2”/ H (2Ha+1)cos2Hu — 1
c:=
0 2Hy(u)

(4.3)
du.

Remark that the integration in (4.3) cannot be expressed in
terms of elementary functions. In fact, it is an elliptic integral.

Proposition 4.4. Let H > 0 and a € (—1/(2H),0) be con-
stants. Then z(s) in (4.2) is a decreasing function Sikh @(s) < 0.
Then the curve v(s) = (z(s),y(s)) has no self-intersection, and
can be expressed as the graph y = f(x).

Proof. Since 0 < 2Ha+1 < 1, (2Ha + 1)cos2Hs —1 < 0 for
each s. Hence
i(s) = (2Ha + 1)cos2Hs — 1 <
a 2Hy(u) ’
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Figure 3: an unduloid

and the conclusion follows. O

A surface as in Proposition 4.4 is called an unduloid (Fig-
ure 3).

On the other hand, when a > 0, z(s) is neither increasing
nor decreasing. In fact,

Proposition 4.5. Let H > 0 and a > 0 be constants. Then
the curve v(s) = (x(s),y(s)) in (4.2) have countably many self-
intersections.

A surface as in Proposition 4.5 is called an nodoid (Figure 4).

Plotting Delaunay surfaces. The profile curve of an undu-
loid is obtained as the locus of a focal point of an ellipse while
rolling it without slippage along a given line (C. E. Delaunay),
see [4-1] (Appendix B-6) and/or [4-2] (Appendix B-7). In fact,
we show that such a surface has constant mean curvature: As a
preliminary, we notice that

a

(4.4) r=r0) = 1T ccosd

(a>0,0<e<1)
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Figure 4: a nodoid

on the plane with respect to the polar coordinate system (r, )
represents an ellipse such that O is one of the focal points, and
e is its eccentricity. Since this ellipse can be parametrized as
~v(0) := r(0)(cos f,sin @), the tangent vector at P = () is com-
puted as

() (: Zzlg) B ((1:?;;90)2’ gﬁtjﬁ:;}z) |

Let £ be the angle between the vector ﬁ and the tangent of
the ellipse at P (Fig. 5, left). Then we have

—esind . 1+ ecosf
cosé = , iné = .
V14 2ecosf + e? V14 2ecosf + e?

We rotate the ellipse along the z-axis as in Fig. 5, right. When
the ellipse has rotated angle 6 about the focal point, then the
point tangent to the z-axis has traveled the distance s(6), which
is the arc-length of v(8), that is,

/ a\/1+26cost—|—€2
(1+ ecost)?
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Figure 5:

Then the focal point of the ellipse is represented as

(z,y) = (2(0),y(0)) = (s(0) + r(0) cos £(0),7(0) sin £(0)).
Here, the mean curvature of the surface obtained by rotating
the curve (z(0),y(0)) around the z-axis is computed as

+ .
22+ 923 2y /52 + 42

H =

Here,
. a(l+ecosb) . aesinf - - a
tem— o VT VPS4

where A := v/1+2ecosf +e2. Hence we have H = (1 —
e?)/(2a), which is a constant.

On the other hand, consider rotating a hyperbola along a
line as in Fig. 6. Continuing the rotation, the tangent inter-
section of the hyperbola and the line moves out to infinity, and
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Figure 6:

the line tends to the asymptotic line of the hyperbola. From
this limit state, we continue rotating the other component of
the hyperbola along the given line. Repeating these over and
over again, the locus of the focal point of the hyperbola is the
generating curve of a nodoid. In fact, the polar equation of the
ellipse (4.4), used in the case of an unduloid, also represents a
hyperbola when e > 1. Then the mean curvature of the rotated
surface can be computed similarly, which is constant.
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Exercises

4-1 Explain what is a surfaces of revolution obtained by the
locus of a focal point of an parabola while rolling it without
slippage along a given line?



