Examples of Constant Mean Curvature Surfaces

Planar curves. Let $\gamma: I \ni s \mapsto \gamma(s) \in \mathbb{R}^{2}$ be a smooth map defined on an $I \subset \mathbb{R}$. Then γ is called a regular curve if $\dot{\gamma} \neq 0$ on I, where $=d / d s$. The parameter s is called an arc length parameter if

$$
\begin{equation*}
|\dot{\gamma}(s)|=\left|\frac{d \gamma}{d s}(s)\right|=1 \tag{3.1}
\end{equation*}
$$

holds on I.
Lemma 3.1. A regular curve $\gamma: I \ni t \mapsto \gamma(t) \in \mathbb{R}^{2}$ defined on an interval $I \subset \mathbb{R}$ can be reparametrized by an arc length parameter. Moreover, such an arc length parameter is unique up to additive constants.
Proof. Fix $t_{0} \in I$ and define a function $s: I \rightarrow \mathbb{R}$ by

$$
s(t):=\int_{t_{0}}^{t}\left|\frac{d \gamma}{d t}(u)\right| d u
$$

Then $s: I \rightarrow J \subset \mathbb{R}$ is a smooth function such that $d s / d t>0$. Hence there exists the smooth inverse $J \ni s \mapsto t(s) \in I$. Then $\tilde{\gamma}(s):=\gamma(t(s))$ is the desired reparametrization. In fact,

$$
\begin{aligned}
\left|\frac{d \tilde{\gamma}(s)}{d s}\right| & =\left|\frac{d \gamma}{d t}(t(s)) \frac{d t}{d s}(s)\right|=\left|\frac{d \gamma}{d t}(t(s)) \frac{1}{d s / d t(t(s))}\right| \\
& =\left|\frac{d \gamma}{d t}(t(s)) \frac{1}{|d \gamma / d t(t(s))|}\right|=1
\end{aligned}
$$

[^0]So we have the first assertion. Let s and u be two arc length parameters. Then there exists a parameter change $u=u(s)$, which is strictly increasing function such that

$$
1=\left|\frac{d \gamma}{d s}\right|==\left|\frac{d \gamma}{d u} \frac{d u}{d s}\right|=\frac{d u}{d s}\left|\frac{d \gamma}{d u}\right|=\frac{d u}{d s}
$$

Hence $u=s+$ constant, proves the second assertion.
Throughout this section, we assume that planar curves are parameterized by arc length parameter.

Let $\gamma(s)={ }^{t}(x(s), y(s)) \quad(s \in I)$ be a parametrized planar curve where s is an arc length parameter. Then

$$
\boldsymbol{e}(s):=\dot{\gamma}(s)=\binom{\dot{x}(s)}{\dot{y}(s)}, \quad \boldsymbol{n}(s):=\binom{-\dot{y}(s)}{\dot{x}(s)}
$$

are mutually perpendicular orthogonal vectors for each $s \in I$. Thus we have obtained a map

$$
\begin{equation*}
\mathcal{F}(s):=(\boldsymbol{e}(s), \boldsymbol{n}(s)): I \longmapsto \mathrm{SO}(2), \tag{3.2}
\end{equation*}
$$

where $\mathrm{SO}(2)$ is the set (a group) of 2×2-orthogonal matrix of determinant 1. We call \mathcal{F} the frame of γ. Note that

$$
\mathrm{SO}(2)=\{R(\theta) \mid \theta \in \mathbb{R}\}, \quad R(\theta):=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \tag{3.3}\\
\sin \theta & \cos \theta
\end{array}\right) .
$$

Theorem 3.2 (The Frenet formula). Let $\mathcal{F}(s)$ be the frame of the curve $\gamma(s)$ where s is an arc length parameter defined on an
interval I. Then there exists a unique smooth function $\kappa: I \rightarrow \mathbb{R}$ such that

$$
\dot{\mathcal{F}}=\mathcal{F} \Omega \quad \Omega(s):=\kappa(s)\left(\begin{array}{rr}
0 & -1 \tag{3.4}\\
1 & 0
\end{array}\right) .
$$

Proof. Since \mathcal{F} is a function valued on $\mathrm{SO}(2), \mathcal{F}^{-1} \dot{\mathcal{F}}$ is valued on the set of skew-symmetric matrices. In fact, since ${ }^{t} \mathcal{F}=\mathcal{F}^{-1}$,

$$
\begin{aligned}
{ }^{t}\left(\mathcal{F}^{-1} \dot{\mathcal{F}}\right) & ={ }^{t}\left({ }^{t} \mathcal{F} \dot{\mathcal{F}}\right)={ }^{t} \dot{\mathcal{F}} \mathcal{F}=\frac{d}{d s} \mathcal{F}^{-1} \mathcal{F} \\
& =-\mathcal{F}^{-1} \dot{\mathcal{F}} F^{-1} \mathcal{F}=-\mathcal{F}^{-1} \dot{\mathcal{F}}
\end{aligned}
$$

Hence there exists a function $\kappa(s)$ such that

$$
\mathcal{F}^{-1} \dot{\mathcal{F}}=\left(\begin{array}{rr}
0 & -\kappa \\
\kappa & 0
\end{array}\right)
$$

proving the theorem.
We call the function κ the curvature of the curve γ.
Proposition 3.3. Let $\gamma(s)={ }^{t}(x(s), y(s))$ be a planar curve parametrized by the arc length s. Then its curvature satisfies

$$
\kappa=\dot{x} \ddot{y}-\dot{y} \ddot{x} .
$$

Theorem 3.4 (The fundamental theorem for planar curves). Let $\kappa: I \rightarrow \mathbb{R}$ be a smooth function. Then there exists a curve $\gamma: I \rightarrow \mathbb{R}$ parametrized by the arc length whose curvature is κ. Moreover, such a curve γ is unique up to rotations and translations of \mathbb{R}^{2}.

Proof. First we shall prove uniqueness: Let $\gamma_{j}(j=1,2)$ be curves with curvature κ, and denote by $\mathcal{F}_{j}(j=1,2)$ the frame of γ_{j}. Then by (3.4),

$$
\begin{aligned}
\frac{d}{d s}\left(\mathcal{F}_{2} \mathcal{F}_{1}^{-1}\right) & =\frac{d}{d s}\left(\mathcal{F}_{2}{ }^{t} \mathcal{F}_{1}\right)==\dot{\mathcal{F}}_{2}{ }^{t} \mathcal{F}_{1}+\mathcal{F}_{2}{ }^{t} \dot{\mathcal{F}}_{1} \\
& =\mathcal{F}_{2} \Omega^{t} \mathcal{F}_{1}+\mathcal{F}_{2}{ }^{t} \mathcal{F}_{1} \Omega=\mathcal{F}_{2}\left(\Omega+{ }^{t} \Omega\right)^{t} \mathcal{F}_{1}=O
\end{aligned}
$$

holds, and thus there exist constant matrix such that

$$
\mathcal{F}_{2} \mathcal{F}_{1}^{-1}=A \quad(A \in \mathrm{SO}(2))
$$

that is, $\mathcal{F}_{2}=A \mathcal{F}_{1}$. Comparing the first column of this, we have

$$
\dot{\gamma}_{2}=A \dot{\gamma}_{1} \quad \text { and then } \quad \gamma_{2}=A \dot{\gamma}_{1}+\boldsymbol{a}
$$

where $A \in \mathrm{SO}(2)$ and $\boldsymbol{a} \in \mathbb{R}^{2}$. Hence the uniqueness part holds. Next, we prove existence: fix $s_{0} \in I$ and set

$$
\gamma(s):=\int_{s_{0}}^{s}\left(\cos \int_{s_{0}}^{u} \kappa(t) d t, \sin \int_{s_{0}}^{u} \kappa(t) d t\right) d u .
$$

Then one can check that s is the arc length parameter of $\gamma(s)$, and $\kappa(s)$ is the curvature.

Surfaces of revolution. Let $\gamma(s)=(x(s), y(s))$ be a regular curve parametrized by the arc length s, satisfying $y(s)>0$ for all s. Then the surface of revolution of γ about the x-axis is parametrized as
(3.5) $f(t, s):=(x(s), y(s) \cos t, y(s) \sin t), d$
$(t, s) \in S^{1} \times I$.

The curve γ is called the profile curve of the surface (3.5).
Noticing $\dot{x}^{2}+\dot{y}^{2}=1$, the first fundamental form I and the second fundamental form of f are expressed as
$I=y^{2} d t^{2}+d s^{2}, \quad I I=-\dot{x} y d t^{2}+(\dot{x} \ddot{y}-\dot{y} \ddot{x}) d s^{2}=-\dot{x} y d t^{2}+\kappa d s^{2}$,
where κ is the curvature of the profile curve (cf. Proposition 3.3). Hence we have

Proposition 3.5. The mean curvature function H of the surface (3.5) is expressed as

$$
\begin{equation*}
2 H=\kappa-\frac{\dot{x}}{y} . \tag{3.6}
\end{equation*}
$$

Delaunay surfaces.

Theorem 3.6. Let H be a non-zero constant. Then the profile curve $(x(s), y(s))$ of a surface of revolution with constant mean curvature H is expressed as

$$
\begin{align*}
& y(s)=\frac{1}{2 H} \sqrt{(2 H a+1)^{2}-2(2 H a+1) \cos 2 H s}, \\
& x(s)=\int_{0}^{s} \frac{1+(2 a H+1) \cos 2 H u}{y(u)} d u, \tag{3.7}
\end{align*}
$$

up to horizontal translations and parameter changes, where a is a constant.

Proof. Let $\gamma(s):=(x(s), y(s))$ be the profile curve of given surface of revolution with constant mean curvature H. Then by
(3.6), the curvature function κ of γ satisfies

$$
\kappa=2 H+\frac{\dot{x}}{y} .
$$

Thus, the frame \mathcal{F} of γ satisfies the Frenet formula (Theorem 3.2):

$$
\dot{\mathcal{F}}=\left(2 H+\frac{\dot{x}}{y}\right) \mathcal{F}\left(\begin{array}{rr}
0 & -1 \tag{3.8}\\
1 & 0
\end{array}\right)
$$

We shall find the curve solving this differential equation. Set

$$
\widetilde{\mathcal{F}}:=y \mathcal{F}
$$

Then, noticing

$$
\begin{equation*}
\dot{x}^{2}+\dot{y}^{2}=1, \tag{3.9}
\end{equation*}
$$

the equation (3.8) is equivalent to

$$
\dot{\tilde{\mathcal{F}}}=2 H \mathcal{F}\left(\begin{array}{cc}
0 & -2 H \tag{3.10}\\
2 H & 0
\end{array}\right)+\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Let
(3.11) $\quad A(s):=\widetilde{\mathcal{F}}(s) \mathcal{F}_{0}(s)^{-1}$,

$$
\mathcal{F}_{0}(s):=R(2 H s)=\left(\begin{array}{rr}
\cos 2 H s & -\sin 2 H s \\
\sin 2 H s & \cos 2 H s
\end{array}\right)
$$

Substituting $\widetilde{\mathcal{F}}=A \mathcal{F}_{0}$ into (3.10), we have

$$
\dot{A}=\left(\begin{array}{rr}
0 & -1 \tag{3.12}\\
1 & 0
\end{array}\right) \mathcal{F}_{0}^{-1}=\left(\begin{array}{rr}
\sin 2 H s & -\cos 2 H s \\
\cos 2 H s & \sin 2 H s
\end{array}\right)
$$

and then

$$
A=\frac{-1}{2 H}\left(\begin{array}{rr}
\cos 2 H s & \sin 2 H s \tag{3.13}\\
-\sin 2 H s & \cos 2 H s
\end{array}\right)+C
$$

where C is a constant matrix．Summing up，it holds that
（3．14）$y \mathcal{F}=\widetilde{\mathcal{F}}=A \mathcal{F}_{0}$

$$
=\frac{1}{2 H}\left(C\left(\begin{array}{rr}
\cos 2 H s & -\sin 2 H s \\
\sin 2 H s & \cos 2 H s
\end{array}\right)-\mathrm{id}\right) .
$$

Since right－hand side is a periodic function and $\mathcal{F} \in \mathrm{SO}(2), y^{2}$ （and then y ）is a periodic function．Hence y must take both maximum and minimum．By a change of parameter s to $s+$ constant and a horizontal translation $x \mapsto x+$ constant，we may assume y takes its maximum at $s=0$ ，and $x(0)=0$ ．Moreover， by the reflection of the y－axis，we may assume $\dot{x}(0) \geqq 0$ without loss of generality．Hence we can assume an initial condition
$(x(0), y(0))=(0, a), \quad(\dot{x}(0), \dot{y}(0))=(1,0), \quad \ddot{y}(0)=\kappa(0) \leqq 0$.
Substituting these into（3．14），we have $C=(2 H a+1) \mathrm{id}$ ：
（3．15）$y \mathcal{F}=\frac{1}{2 H}\left((2 H a+1)\left(\begin{array}{rr}\cos 2 H s & -\sin 2 H s \\ \sin 2 H s & \cos 2 H s\end{array}\right)-\mathrm{id}\right)$ ．
Taking the determinant of this，we have

$$
\left.y^{2}=\frac{1}{(2 H)^{2}}((2 H a+1) \cos 2 H s-1)^{2}+\left(2 H a^{2}+1\right) \sin ^{2} 2 H s\right)
$$

and then

$$
y=\frac{1}{2 H} \sqrt{(2 H a+1)^{2}-2(2 H a+1) \cos 2 H s}
$$

On the other hand，the（1，1）－component of（？？）is expressed as

$$
y \dot{x}=\frac{1}{2 H}(1+(2 a H+1) \cos 2 H s) .
$$

Thus we have the conclusion．
The surfaces in（3．7）are called the Delaunay surfaces．

References

［3－1］劍持勝衛：「曲面論講義—平均曲率一定曲面入門」（培風館，2000）．
［3－2］K．Kenmotsu，Surfaces with constant mean curvature，Transla－ tions of Mathematical Monographs，translated by Katsuhiro Moriya， American Math．Soc．， 2003.

Exercises

$3-\mathbf{1}^{\mathrm{H}}$ Draw pictures of Delaunay curves for $H=\frac{1}{2}$ ．
$3-2^{\mathrm{H}}$ Classify minimal surfaces of revolution．

[^0]: 24. April, 2018.
