Surfaces of constant mean curvature

Closed surfaces A closed surface in the Euclidean 3-space \mathbb{R}^{3} is a C^{∞}-immersion $f: \Sigma \rightarrow \mathbb{R}^{3}$ of a compact, connected 2 dimensional manifold Σ into \mathbb{R}^{3}. Taking a local coordinate neighborhood ($U ; u, v$) of Σ, f can be identified a parametrized surface $f(u, v)$ as in the previous section.

Throughout this section, we assume that Σ is oriented, that is, an atlas $\left\{\left(U_{\alpha} ; u^{\alpha}, v^{\alpha}\right) \mid \alpha \in A\right\}$ of Σ satisfying

$$
\begin{equation*}
\frac{\partial\left(u^{\beta}, v^{\beta}\right)}{\partial\left(u^{\alpha}, v^{\alpha}\right)}:=\operatorname{det} J_{\alpha \beta}>0 \quad \text { on } U_{\alpha} \cap U_{\beta} \tag{2.1}
\end{equation*}
$$

for each $\alpha, \beta \in A$ with $U_{\alpha} \cap U_{\beta} \neq \emptyset$ is specified. Here $J_{\alpha \beta}$ is the Jacobian matrix of the coordinate change $\left(u^{\alpha}, v^{\alpha}\right) \mapsto\left(u^{\beta}, v^{\beta}\right)$

$$
J_{\alpha \beta}:=\left(\begin{array}{ll}
\frac{\partial u^{\beta}}{\partial u^{\alpha}} & \frac{\partial u^{\beta}}{\partial v^{\alpha}} \tag{2.2}\\
\frac{\partial v^{\beta}}{\partial u^{\alpha}} & \frac{\partial v^{\beta}}{\partial v^{\alpha}}
\end{array}\right)
$$

Fix a coordinate neighborhood $(U ; u, v)$. Then the immersion $f:(u, v) \mapsto f(u, v)$ is considered as a vector-valued smooth function on U, and so are there derivatives f_{u} and f_{v}. Then the unit normal vector ν, the first fundamental form $d s^{2}$, the second fundamental form $I I$, the area element $d A$, the Gaussian curvature K and the mean curvature H are defined as in (1.1), (1.2), (1.3) and (1.5) in the previous section. Moreover, one can prove easily that they are independent on choice of local coordinate systems (cf. [2-1] and/or [2-2]).

[^0]Definition 2.1. Let $f: \Sigma \rightarrow \mathbb{R}^{3}$ be an oriented closed surface. Then the area $\mathcal{A}(f)$ of $f(\Sigma)$ and the (signed) volume $\mathcal{V}(f)$ of the region bounded by $f(\Sigma)$ are defined as

$$
\mathcal{A}(f):=\int_{\Sigma} d A, \quad \mathcal{V}(f):=\frac{1}{3} \int_{\Sigma} f \cdot \nu d A
$$

where "." denotes the canonical inner product of \mathbb{R}^{3}, ν is the unit normal vector as in (1.1), and $d A$ denotes the area element which is represented by $d A:=\left|f_{u} \times f_{v}\right| d u d v$ on each coordinate neighborhood $(U ; u, v)$.

Remark 2.2. If the surface f is an embedding, that is, the map f is injective (in this case), the image $f(\Sigma)$ bounds a bounded and connected region D of \mathbb{R}^{3}, and the volume of D coincide with the absolute value of $\mathcal{V}(f)$.

Obviously, these two functionals have the following properties:

Lemma 2.3. For an immersion $f \in \mathcal{S}(\Sigma)$ and a positive number $\lambda>0, \mathcal{A}(\lambda f)=\lambda^{2} \mathcal{A}(f)$, and $\mathcal{V}(\lambda f)=\lambda^{3} \mathcal{V}(f)$ hold.

Example 2.4 (The round sphere). Let $R>0$ be a constant and denote by

$$
S^{2}(R):=\left\{\boldsymbol{x} \in \mathbb{R}^{3}| | \boldsymbol{x} \mid=R\right\} \subset \mathbb{R}^{3}
$$

the sphere in \mathbb{R}^{3} of radius R centered at the origin. Then the inclusion map

$$
\iota: S^{2}(R) \ni \boldsymbol{x} \longmapsto \iota(\boldsymbol{x})=\boldsymbol{x} \in \mathbb{R}^{3}
$$

is an embedding. A map

$$
\begin{aligned}
\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) & \times(-\pi, \pi) \ni(u, v) \\
& \longmapsto(R \cos u \cos v, R \cos u \sin v, R \sin u) \in S^{2}(R)
\end{aligned}
$$

gives a local coordinate system of $S^{2}(R)$, and we have

$$
d A=R^{2} \cos u d u d v, \quad \nu=-(\cos u \cos v, \cos u \sin v, \sin u)
$$

Since this coordinate neighborhood covers an open dense subset of $S^{2}(R)$, "integration over $S^{2}(R)$ " is replaced by "integration over $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times[-\pi, \pi]$ ":

$$
\begin{aligned}
\mathcal{A}(\iota) & =\int_{-\pi / 2}^{\pi / 2} d u \int_{-\pi}^{\pi} d v R^{2} \cos u \\
& =2 \pi R^{2} \int_{-\pi / 2}^{\pi / 2} \cos u d u=4 \pi R^{2} \\
\mathcal{V}(\iota) & =\frac{1}{3} \int_{-\pi / 2}^{\pi / 2} \int_{-\pi}^{\pi} R^{3} \cos u d u d v=-\frac{4}{3} \pi R^{3}
\end{aligned}
$$

The Gaussian and the mean curvature are computed as

$$
K=\frac{1}{R^{2}} \quad \text { and } \quad H=\frac{1}{R}
$$

respectively, which are constant on the surface. We call S_{R}^{2} the round sphere of radius R.

Area minimizing surfaces with a volume constraint. Let Σ be a compact, connected and oriented 2-manifold and consider

$$
\text { (2.3) } \quad \mathcal{S}(\Sigma)=\left\{f: \Sigma \rightarrow \mathbb{R}^{3} \mid f \text { is an immersion }\right\} .
$$

In addition, for a fixed positive constant V_{0}. we set

$$
\begin{equation*}
\mathcal{S}\left(\Sigma, V_{0}\right):=\left\{f \in \mathcal{S}(\Sigma) \mid \mathcal{V}(f)=V_{0}\right\} \tag{2.4}
\end{equation*}
$$

that is, $\mathcal{S}\left(\Sigma, V_{0}\right)$ is the set of immersions of Σ into \mathbb{R}^{3} bounding given volume V_{0}.

In this section, we shall prove
Theorem 2.5. If $f_{0} \in \mathcal{S}\left(\Sigma, V_{0}\right)$ minimizes the area in $\mathcal{S}\left(\Sigma, V_{0}\right)$, the mean curvature of f_{0} is non-zero constant.

Theorem 2.5 and Example 2.4 give rise to the following question, known as Heinz-Hopf's problem:
Question 2.6. Are there a closed surface of constant mean curvature which is not congruent to the round sphere?

Variation formula for the area and the volume Similar to the previous section, we define variations of $f \in \mathcal{S}(\Sigma)$:

Definition 2.7. A variation of an immersion $f: \Sigma \rightarrow \mathbb{R}^{3}$ is a C^{∞}-map $F:(-\varepsilon, \varepsilon) \times \Sigma \rightarrow \mathbb{R}^{3}$ satisfying

- $f^{t}:=F(t, *): \Sigma \rightarrow \mathbb{R}^{3}$ is an immersion for each $t \in(-\varepsilon, \varepsilon)$,
- $f^{0}=F(0, *)$ coincides with f.

The variational vector field V of a variation $F=\left\{f^{t}\right\}$ is a vector-valued function V on Σ defined by

$$
V(p):=\left.\frac{\partial}{\partial t}\right|_{t=0} F(t, p) \quad(p \in \Sigma)
$$

Similar to variational formula in Section 1, we have
Theorem 2.8. Let $\left\{f^{t}\right\}$ be a variation of an immersion $f: \Sigma \rightarrow$ \mathbb{R}^{3}. Then

$$
\left.\frac{d}{d t}\right|_{t=0} \mathcal{A}\left(f^{t}\right)=-2 \int_{\Sigma} H \varphi d A,\left.\quad \frac{d}{d t}\right|_{t=0} \mathcal{V}\left(f^{t}\right)=\int_{\Sigma} \varphi d A
$$

hold, where $\varphi:=V \cdot \nu, V$ is the variational vector field of $\left\{f^{t}\right\}$ and ν is the unit normal vector field of f.

Proof. Since almost all part of the computation in the previous section are coordinate-independent, we can show the result in a similar way to them.

Here, we shall prove the formula for the volume functional Let $(U ; u, v)$ be a local coordinate system. Then it holds that

$$
\begin{aligned}
\Phi: & =f^{t} \cdot \nu^{t}\left|f_{u}^{t} \times f_{v}^{t}\right|=f^{t} \cdot \frac{f_{u}^{t} \times f_{v}^{t}}{\left|f_{u}^{t} \times f_{v}^{t}\right|}\left|f_{u}^{t} \times f_{v}^{t}\right| \\
& =\operatorname{det}\left(f^{t}, f_{u}^{t}, f_{v}^{t}\right)
\end{aligned}
$$

Differentiating this in t, we have

$$
\begin{aligned}
\left.\frac{\partial}{\partial t}\right|_{t=0} \Phi & =\operatorname{det}\left(\dot{f}^{t}, f_{u}, f_{v}\right)+\operatorname{det}\left(f, \dot{f}_{u}^{t}, f_{v}\right)+\operatorname{det}\left(f, f_{u}, \dot{f}_{v}^{t}\right) \\
& =\operatorname{det}\left(V, f_{u}, f_{v}\right)+\operatorname{det}\left(f, V_{u}, f_{v}\right)+\operatorname{det}\left(f, f_{u}, V_{v}\right)
\end{aligned}
$$

where $\dot{*}=\left.(\partial / \partial t)\right|_{t=0}$. Here, since

$$
\begin{aligned}
\operatorname{det}\left(V, f_{u}, f_{v}\right) & =V \cdot\left(f_{u} \times f_{v}\right)=(V \cdot \nu)\left|f_{u} \times f_{v}\right|, \\
\operatorname{det}\left(f, V_{u}, f_{v}\right) & =\left(\operatorname{det}\left(f, V, f_{v}\right)\right)_{u}-\operatorname{det}\left(f, V, f_{u v}\right)-\operatorname{det}\left(f_{u}, V, f_{v}\right) \\
& =\left(\operatorname{det}\left(f, V, f_{v}\right)\right)_{u}-\operatorname{det}\left(f, V, f_{u v}\right)+\operatorname{det}\left(V, f_{u}, f_{v}\right) \\
\operatorname{det}\left(f, f_{u}, V_{v}\right) & =\left(\operatorname{det}\left(f, f_{u}, V\right)\right)_{v}-\operatorname{det}\left(f, f_{u v}, V\right)-\operatorname{det}\left(f_{v}, f_{u}, V\right) \\
& =\left(\operatorname{det}\left(f, f_{u}, V\right)\right)_{v}-\operatorname{det}\left(f, f_{u v}, V\right)+\operatorname{det}\left(V, f_{u}, f_{v}\right),
\end{aligned}
$$

it holds that

$$
\begin{aligned}
\left(\left.\frac{\partial}{\partial t}\right|_{t=0} \Phi\right. & \Phi) d u \wedge d v=3(V \cdot \nu)\left|f_{u} \times f_{v}\right| d u \wedge d v \\
& +\left(\left(\operatorname{det}\left(f, V, f_{v}\right)\right)_{u}+\left(\operatorname{det}\left(f, f_{u}, V\right)\right)_{v}\right) d u \wedge d v
\end{aligned}
$$

Here, setting

$$
\alpha:=\operatorname{det}\left(f, V, f_{u}\right) d u+\operatorname{det}\left(f, V, f_{v}\right) d v=\operatorname{det}(f, V, d f),
$$

we have the coordinate-independent expression

$$
\left(\left.\frac{\partial}{\partial t}\right|_{t=0} \Phi\right) d u \wedge d v=3(V \cdot \nu) d A+d \alpha
$$

and then,

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \mathcal{V}\left(f^{t}\right) & =\frac{1}{3} \int_{\Sigma}\left(\left.\frac{\partial}{\partial t}\right|_{t=0} \Phi\right) d u \wedge d v \\
& =\int_{\Sigma}(V \cdot \nu) d A+\frac{1}{3} d \alpha=\int_{\Sigma}(V \cdot \nu) d A
\end{aligned}
$$

proving the formula.

Proof of Theorem 2．5．Let $f_{0} \in \mathcal{S}\left(\Sigma, V_{0}\right)$ be an immersion minimizing area in $\mathcal{S}\left(\Sigma, V_{0}\right)$ ．Then it holds that

$$
\left.\frac{d}{d t}\right|_{t=0} \mathcal{A}\left(f^{t}\right)=0 \quad \begin{align*}
& \text { for any volume preserving } \tag{2.5}\\
& \text { variation }\left\{f^{t}\right\}
\end{align*}
$$

Here，a variation $\left\{f^{t}\right\}$ of f_{0} is said to be volume preserving if $\mathcal{V}\left(f^{t}\right)=\mathcal{V}\left(f_{0}\right)$ for all t ．

Let $\left\{f^{t}\right\}$ be a（not necessarily volume preserving）variation of f_{0} ．Then，by Lemma 2．3，$\left\{\tilde{f}^{t}\right\}$ defined by

$$
\tilde{f}^{t}:=\frac{\mathcal{V}\left(f^{t}\right)^{-1 / 3}}{\mathcal{V}\left(f_{0}\right)^{1 / 3}} f^{t}
$$

is volume preserving variation，and the map $\left\{f^{t}\right\} \mapsto\left\{\tilde{f}^{t}\right\}$ is a surjection to the set of volume preserving variations．That is， （2．5）is equivalent to
（2．6）$\left.\quad \frac{d}{d t}\right|_{t=0} \mathcal{A}\left(\frac{\mathcal{V}\left(f^{t}\right)^{-1 / 3}}{\mathcal{V}\left(f_{0}\right)^{-1 / 3}} f^{t}\right)=0 \quad$ for any variation $\left\{f^{t}\right\}$ ．
Here，by Theorem 2．8，

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} & \mathcal{A}\left(\mathcal{V}\left(f^{t}\right)^{-1 / 3} f^{t}\right)=\left.\frac{d}{d t}\right|_{t=0} \mathcal{V}\left(f^{t}\right)^{-2 / 3} \mathcal{A}\left(f^{t}\right) \\
& =-\frac{2}{3} \dot{\mathcal{V}}\left(f^{t}\right) \mathcal{V}\left(f_{0}\right)^{-5 / 3} \mathcal{A}\left(f_{0}\right)+\mathcal{V}\left(f_{0}\right)^{-2 / 3} \dot{\mathcal{A}}\left(f^{t}\right) \\
& =\mathcal{V}\left(f_{0}\right)^{-2 / 3}\left(-\frac{2}{3} \frac{\mathcal{A}\left(f_{0}\right)}{\mathcal{V}\left(f_{0}\right)} \dot{\mathcal{V}}\left(f^{t}\right)+\dot{\mathcal{A}}\left(f^{t}\right)\right) \\
& =\mathcal{V}\left(f_{0}\right)^{-2 / 3}\left(\int_{\Sigma}\left(-\frac{2}{3} \frac{\mathcal{A}\left(f_{0}\right)}{\mathcal{V}\left(f_{0}\right)}-2 H\right) \varphi d A\right),
\end{aligned}
$$

where $\dot{*}=\left.(d / d t)\right|_{t=0}$ and $\varphi=V \cdot \nu$ ．Then by Lemma 1．7，

$$
-\frac{2}{3} \frac{\mathcal{A}\left(f_{0}\right)}{\mathcal{V}\left(f_{0}\right)}-2 H=0
$$

holds，and then H is constant．

References

［2－1］梅原雅顕，山田光太郎，曲線と曲面（改訪版），裳華房，2014．
［2－2］Masaaki Umehara and Kotaro Yamada，Differential Geometry of Curves and Surfaces，（trasl．by Wayne Rossman），World Scientific， 2017.

Exercises

2－1 ${ }^{\mathrm{H}}$ Let $\mathcal{C}:=\left\{\gamma: S^{1} \rightarrow \mathbb{R}^{2} \mid \gamma^{\prime} \neq \mathbf{0}\right\}$ be the set of regular closed curves on \mathbb{R}^{2} ．
（1）Define the area $\mathcal{A}(\gamma)$ of the region bounded by γ ．
（2）Let $\mathcal{C}(a)$ be the set of curves γ with $\mathcal{A}(\gamma)=a$ ．Show that if a curve $\gamma_{0} \in \mathcal{C}(a)$ minimizes the length in $\mathcal{C}(a)$ ，the curvature of γ_{0} is constant．

Hint：A curve $\gamma \in \mathcal{C}(a)$ can be parametrized $\gamma(t)=$ ${ }^{t}(x(t), y(t))$ as a 2π－periodic function．The length $\mathcal{L}(\gamma)$ and the curvature function κ of γ are defined as

$$
\begin{aligned}
\qquad \mathcal{L}(\gamma) & :=\int_{0}^{2 \pi}|\dot{\gamma}(t)| d t, \quad \kappa(t):=\frac{\operatorname{det}(\dot{\gamma}(t), \ddot{\gamma}(t))}{|\dot{\gamma}(t)|^{3}} \\
\text { where } \cdot & =d / d t .
\end{aligned}
$$

[^0]: 17. April, 2018. Revised: 24. April, 2018
