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A Typical Memory Hierarchy
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Speed (%cycles): ½’s             1’s                   10’s                    100’s                  1,000’s
Size (bytes):    100’s   K’s                   10K’s                      M’s                  G’s to T’s

Cost:       highest                                                                                     lowest

 By taking advantage of the principle of locality （局所性）

 Present much memory in the cheapest technology
 at the speed of fastest technology

TLB: Translation Lookaside Buffer
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Sources of Cache Misses

• Compulsory (初期参照ミス，cold start or process migration, 
first reference):
• First access to a block, “cold” fact of life, not a whole lot you 

can do about it
• If you are going to run “millions” of instruction, compulsory 

misses are insignificant
• Conflict (競合性ミス，collision):

• Multiple memory locations mapped to the same cache location
• Solution 1: increase cache size
• Solution 2: increase associativity

• Capacity (容量性ミス):
• Cache cannot contain all blocks accessed by the program
• Solution: increase cache size 
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Reducing Cache Miss Rates, Associativity

• Allow more flexible block placement
• In a direct mapped cache a memory block maps to exactly 

one cache block
• At the other extreme, could allow a memory block to be 

mapped to any cache block – fully associative cache

• A compromise is to divide the cache into sets each of which 
consists of n “ways” (n-way set associative).  
A memory block maps to a unique set and can be placed in 
any way of that set (so there are n choices)
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Cache Associativity

本棚

机
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Caching: Direct mapped (First Example)

00
01
10
11

Cache
0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
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1110xx
1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache tag
to the high order 2 
memory address bits
to tell if the memory 
block is in the cache

Valid
Two low order bits 
define the byte in the 
word (32-b words)

Q2: How do we find it?

Use next 2 low order 
memory address bits –
the index – to determine 
which cache block

(block address) modulo (# of blocks in the cache)

Index
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Set Associative Cache Example
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Q: Is it there?

Compare all the cache 
tags in the set to the high 
order 3 memory address bits
to tell if the memory block is 
in the cache
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Q: How do we find it?

Use next 1 low order 
memory address bit to 
determine which cache 
set
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0 4 0 4

0 4 0 4

Another Reference String Mapping

• Consider the main memory word reference string
• 0   4   0   4   0   4   0   4

miss miss miss miss

miss miss miss miss

00    Mem(0) 00    Mem(0)
01 4

01    Mem(4)
000

00    Mem(0)
01

4

00    Mem(0)
01 4

00    Mem(0)
01

4
01    Mem(4)

000
01    Mem(4)

000

 Ping pong effect due to conflict misses - two memory 
locations that map into the same cache block

 8 requests, 8 misses
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0 4 0 4

Another Reference String Mapping

• Consider the main memory word reference string
0   4   0   4   0   4   0   4

miss miss hit hit

000    Mem(0) 000    Mem(0)

Start with an empty cache –
all blocks initially marked as not valid

010    Mem(4) 010    Mem(4)

000    Mem(0) 000    Mem(0)

010    Mem(4)

 Solves the ping pong effect in a direct mapped cache due to conflict 
misses

 8 requests, 2 misses
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Four-Way Set Associative Cache
• 28 = 256 sets each with four ways (each with one block)
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MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30       . . .         13 12  11     . . .        2  1  0
Byte 
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit
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Range of Set Associative Caches

• For a fixed size cache

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block
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Cache Associativity

本棚

机
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Costs of Set Associative Caches

• N-way set associative cache costs
• N comparators (delay and area)
• MUX delay (set selection) before data is available
• Data available after set selection and Hit/Miss decision.   

• When a miss occurs, 
which way’s block do we pick for replacement ?
• Least Recently Used (LRU):

the block replaced is the one that has been unused for the 
longest time
• Must have hardware to keep track of when each way’s block was 

used 
• For 2-way set associative, takes one bit per set →

set the bit when a block is referenced 
(and reset the other way’s bit)

• Random
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Benefits of Set Associative Caches

0

2

4

6

8

10

12

1-way 2-way 4-way 8-way
Associativity

M
is

s 
R

at
e

4KB
8KB
16KB
32KB
64KB
128KB
256KB
512KB

• The choice of direct mapped or set associative depends on the cost 
of a miss versus the cost of implementation

Data from Hennessy & Patterson, 
Computer Architecture, 2003

 Largest gains are in going from direct mapped to 2-way
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Reducing Cache Miss Rates by multiple levels

• Enough room on the die for bigger L1 caches or for a second level of 
caches – normally a unified L2 cache (i.e., it holds both instructions and 
data) and in some cases even a unified L3 cache

• For our example, 
• CPIideal of 2,  
• 100 cycle miss penalty (to main memory),  
• 36% load/stores,  
• a 2% (4%) L1I$ (D$) miss rate,  
• add a UL2$ that has a 25 cycle miss penalty and a 0.5% miss rate

CPIstalls =  2  +  .02×25 +  .36×.04×25 +  .005×100 + 
.36×.005×100 =  3.54                                                           

(as compared to 5.44 with no L2$)

L1 cache L2 cache L3 cache
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Multilevel Cache Design Considerations

• Design considerations for L1 and L2 caches are very 
different
• Primary cache should focus on minimizing hit time in support 

of a shorter clock cycle
• Secondary cache should focus on reducing miss rate to 

reduce the penalty of long main memory access times

• The miss penalty of the L1 cache is significantly reduced by 
the presence of an L2 cache – so it can be smaller (i.e., 
faster) but have a higher miss rate

• For the L2 cache, hit time is less important than miss rate
• The L2$ hit time determines L1$’s miss penalty
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Key Cache Design Parameters

L1 typical L2 typical

Total size (blocks) 250 to 2000 4000 to 
250,000

Total size (KB) 16 to 64 500 to 8000

Block size (B) 32 to 64 32 to 128

Miss penalty (clocks) 10 to 25 100 to 1000

Miss rates 2% to 5% 0.1% to 2%
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Two Machines’ Cache Parameters

Intel P4 AMD Opteron

L1 organization Split I$ and D$ Split I$ and D$

L1 cache size 8KB for D$, 96KB for trace 
cache (~I$)

64KB for each of I$ and D$

L1 block size 64 bytes 64 bytes

L1 associativity 4-way set assoc. 2-way set assoc.

L1 replacement ~ LRU LRU

L1 write policy write-through write-back

L2 organization Unified Unified

L2 cache size 512KB 1024KB (1MB)

L2 block size 128 bytes 64 bytes

L2 associativity 8-way set assoc. 16-way set assoc.

L2 replacement ~LRU ~LRU

L2 write policy write-back write-back
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OPT: Optimal Replacement Policy

MICRO-40  Emulating Optimal Replacement with a Shepherd Cache
OPT: あまり切迫していないものを置き換える．
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Example Behavior of Optimal Replacement Policy

MICRO-40  Emulating Optimal Replacement with a Shepherd Cache
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• Several interacting dimensions
• cache size
• block size
• associativity
• replacement policy
• write-through vs write-back
• write allocation

• The optimal choice is a compromise
• depends on access characteristics

• workload
• I-cache, D-cache

• depends on technology / cost
• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

The Cache Design Space


