
CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 1

コンピュータアーキテクチャ
Computer Architecture

5. キャッシュ：セットアソシアティブ方式
Caches: Set-Associative

Ver. 2018-10-10a2018年度（平成30年度）版

Course number: CSC.T363

www.arch.cs.titech.ac.jp/lecture/CA/
Room No.W321
Tue 13:20-16:20, Fri 13:20-14:50

吉瀬 謙二 情報工学系
Kenji Kise, Department of Computer Science
kise _at_ c.titech.ac.jp

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 2

A Typical Memory Hierarchy

Second
Level
Cache

(SRAM)

Control

Datapath

Secondary
Memory
(Disk)

On-Chip Components

R
egFile

Main
Memory
(DRAM)D

ata
C

ache
Instr

C
ache

ITLB
D

TLB

Speed (%cycles): ½’s 1’s 10’s 100’s 1,000’s
Size (bytes): 100’s K’s 10K’s M’s G’s to T’s

Cost: highest lowest

 By taking advantage of the principle of locality （局所性）

 Present much memory in the cheapest technology
 at the speed of fastest technology

TLB: Translation Lookaside Buffer

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 3

Sources of Cache Misses

• Compulsory (初期参照ミス，cold start or process migration,
first reference):
• First access to a block, “cold” fact of life, not a whole lot you

can do about it
• If you are going to run “millions” of instruction, compulsory

misses are insignificant
• Conflict (競合性ミス，collision):

• Multiple memory locations mapped to the same cache location
• Solution 1: increase cache size
• Solution 2: increase associativity

• Capacity (容量性ミス):
• Cache cannot contain all blocks accessed by the program
• Solution: increase cache size

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 4

Reducing Cache Miss Rates, Associativity

• Allow more flexible block placement
• In a direct mapped cache a memory block maps to exactly

one cache block
• At the other extreme, could allow a memory block to be

mapped to any cache block – fully associative cache

• A compromise is to divide the cache into sets each of which
consists of n “ways” (n-way set associative).
A memory block maps to a unique set and can be placed in
any way of that set (so there are n choices)

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 5

Cache Associativity

本棚

机

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 6

Caching: Direct mapped (First Example)

00
01
10
11

Cache
0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Main Memory

Tag Data

Q1: Is it there?

Compare the cache tag
to the high order 2
memory address bits
to tell if the memory
block is in the cache

Valid
Two low order bits
define the byte in the
word (32-b words)

Q2: How do we find it?

Use next 2 low order
memory address bits –
the index – to determine
which cache block

(block address) modulo (# of blocks in the cache)

Index

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 7

Set Associative Cache Example

0

Cache

Tag Data

Q: Is it there?

Compare all the cache
tags in the set to the high
order 3 memory address bits
to tell if the memory block is
in the cache

V

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Set

1

0
1

Way

0

1

Main Memory

Two low order bits
define the byte in the
word (32-b words)
One word blocks

Q: How do we find it?

Use next 1 low order
memory address bit to
determine which cache
set

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 8

0 4 0 4

0 4 0 4

Another Reference String Mapping

• Consider the main memory word reference string
• 0 4 0 4 0 4 0 4

miss miss miss miss

miss miss miss miss

00 Mem(0) 00 Mem(0)
01 4

01 Mem(4)
000

00 Mem(0)
01

4

00 Mem(0)
01 4

00 Mem(0)
01

4
01 Mem(4)

000
01 Mem(4)

000

 Ping pong effect due to conflict misses - two memory
locations that map into the same cache block

 8 requests, 8 misses

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 9

0 4 0 4

Another Reference String Mapping

• Consider the main memory word reference string
0 4 0 4 0 4 0 4

miss miss hit hit

000 Mem(0) 000 Mem(0)

Start with an empty cache –
all blocks initially marked as not valid

010 Mem(4) 010 Mem(4)

000 Mem(0) 000 Mem(0)

010 Mem(4)

 Solves the ping pong effect in a direct mapped cache due to conflict
misses

 8 requests, 2 misses

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 10

Four-Way Set Associative Cache
• 28 = 256 sets each with four ways (each with one block)

31 30 . . . 13 12 11 . . . 2 1 0 Byte offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Index DataTagV
0
1
2
.
.
.

253
254
255

8

Index
22Tag

Hit Data

32

4x1 select

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 11

MIPS Direct Mapped Cache Example

• One word/block, cache size = 1K words

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 12

Range of Set Associative Caches

• For a fixed size cache

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 13

Cache Associativity

本棚

机

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 14

Costs of Set Associative Caches

• N-way set associative cache costs
• N comparators (delay and area)
• MUX delay (set selection) before data is available
• Data available after set selection and Hit/Miss decision.

• When a miss occurs,
which way’s block do we pick for replacement ?
• Least Recently Used (LRU):

the block replaced is the one that has been unused for the
longest time
• Must have hardware to keep track of when each way’s block was

used
• For 2-way set associative, takes one bit per set →

set the bit when a block is referenced
(and reset the other way’s bit)

• Random

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 15

Benefits of Set Associative Caches

0

2

4

6

8

10

12

1-way 2-way 4-way 8-way
Associativity

M
is

s
R

at
e

4KB
8KB
16KB
32KB
64KB
128KB
256KB
512KB

• The choice of direct mapped or set associative depends on the cost
of a miss versus the cost of implementation

Data from Hennessy & Patterson,
Computer Architecture, 2003

 Largest gains are in going from direct mapped to 2-way

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 16

Reducing Cache Miss Rates by multiple levels

• Enough room on the die for bigger L1 caches or for a second level of
caches – normally a unified L2 cache (i.e., it holds both instructions and
data) and in some cases even a unified L3 cache

• For our example,
• CPIideal of 2,
• 100 cycle miss penalty (to main memory),
• 36% load/stores,
• a 2% (4%) L1I$ (D$) miss rate,
• add a UL2$ that has a 25 cycle miss penalty and a 0.5% miss rate

CPIstalls = 2 + .02×25 + .36×.04×25 + .005×100 +
.36×.005×100 = 3.54

(as compared to 5.44 with no L2$)

L1 cache L2 cache L3 cache

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 17

Multilevel Cache Design Considerations

• Design considerations for L1 and L2 caches are very
different
• Primary cache should focus on minimizing hit time in support

of a shorter clock cycle
• Secondary cache should focus on reducing miss rate to

reduce the penalty of long main memory access times

• The miss penalty of the L1 cache is significantly reduced by
the presence of an L2 cache – so it can be smaller (i.e.,
faster) but have a higher miss rate

• For the L2 cache, hit time is less important than miss rate
• The L2$ hit time determines L1$’s miss penalty

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 18

Key Cache Design Parameters

L1 typical L2 typical

Total size (blocks) 250 to 2000 4000 to
250,000

Total size (KB) 16 to 64 500 to 8000

Block size (B) 32 to 64 32 to 128

Miss penalty (clocks) 10 to 25 100 to 1000

Miss rates 2% to 5% 0.1% to 2%

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 19

Two Machines’ Cache Parameters

Intel P4 AMD Opteron

L1 organization Split I$ and D$ Split I$ and D$

L1 cache size 8KB for D$, 96KB for trace
cache (~I$)

64KB for each of I$ and D$

L1 block size 64 bytes 64 bytes

L1 associativity 4-way set assoc. 2-way set assoc.

L1 replacement ~ LRU LRU

L1 write policy write-through write-back

L2 organization Unified Unified

L2 cache size 512KB 1024KB (1MB)

L2 block size 128 bytes 64 bytes

L2 associativity 8-way set assoc. 16-way set assoc.

L2 replacement ~LRU ~LRU

L2 write policy write-back write-back

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 20

OPT: Optimal Replacement Policy

MICRO-40 Emulating Optimal Replacement with a Shepherd Cache
OPT: あまり切迫していないものを置き換える．

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 21

Example Behavior of Optimal Replacement Policy

MICRO-40 Emulating Optimal Replacement with a Shepherd Cache

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 22

• Several interacting dimensions
• cache size
• block size
• associativity
• replacement policy
• write-through vs write-back
• write allocation

• The optimal choice is a compromise
• depends on access characteristics

• workload
• I-cache, D-cache

• depends on technology / cost
• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

The Cache Design Space

