FE (CER30F) hin

Course number: CSC.T363

AN
AEa—3T7 —FTIF~
Computer Architecture

B, vyl b7V TT4T AR
Caches: Set-Associative

f
www.arch.cs.titech.ac.jp/lecture/CA/

Room No.W321 aalk— FHRIFR
Tue 13:20-16:20, Fri 13:20-14:50 Kenji Kise, Department of Computer Science

Kise _at_ c.titech.ac.jp 1

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

A Typical Memory Hierarchy

By taking advantage of the principle of locality (FFrE)
Present much memory in the cheapest technology

at the speed of fastest technology PP
On_chlp Components ------------------------ :-;-:-;-:-;l; -------
Control e .
=t Second Secondary
-~ = Level Memory
Datapath | P || = Cache (Disk)
Sl B (SRAM)
o]l |
gy L3 i s e 5 e e B ol S el T LSl TLE LY T
Speed (%cycles): ¥4's 1's 10’s 100’s 1,000’s
Size (bytes): 100’s K's 10K’s M’s G'stoT's
Cost: highest lowest
~@9‘ TLB: Translation Lookaside Buffer

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 2

Sources of Cache Misses x
\

« Compulsory (#1815 83X, cold start or process migration,
first reference):

* First access to a block, “cold” fact of life, not a whole lot you
can do about it

« If you are going to run “millions” of instruction, compulsory
misses are insignificant

« Conflict RETMSR, collision):
« Multiple memory locations mapped to the same cache location
» Solution 1: increase cache size
« Solution 2: increase associativity
« Capacity (B=£3R):
» Cache cannot contain all blocks accessed by the program
« Solution: increase cache size

;

¥ (CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

Reducing Cache Miss Rates, Associativity

\
« Allow more flexible block placement

* Inadirect mapped cache a memory block maps to exactly
one cache block

« At the other extreme, could allow a memory block to be
mapped to any cache block — fully associative cache

« A compromise is to divide the cache into sets each of which
consists of n “ways” (n-way set associative).
A memory block maps to a unique set and can be placed in
any way of that set (so there are n choices)

~ "\ ="
S 4

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

Cache Associativity
S

A

]!

\\J@%:

x CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

Caching: Direct mapped (First Example)
Main Memory x
0000xx
0001xx

0010xx Two low order bits
0011xx define the byte in the

Cache

Index Valid Tag Data

00 0100xx word (32-b words)

01 0101xx

10 0110xx

11 0111xx Q2: How do we find it?
1000xx

1001xx Use next 2 low order
1010xx memory address bits —
1011xX the index — to determine

Q1: Is it there?

Compare the cache tag

to the high order 2 1100xx which cache block
memory address bits 1101xx
to tell if the memory 1110xx
block is in the cache | | 1111xX

~@9‘ (block address) modulo (# of blocks in the cache)

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 6

Set Associative Cache Example

Main Memory \

0000xx _
Cache 0001xx Twc_) low order b_lts
define the byte in the
0010xx
Way Set V Tag Data 0011xx word (32-b words)
One word blocks
0 0100xx
0
1 A 0101xx
0 0110xx
L 0111xx
1000xx Q: How do we find it?
Q: Is it there? 1001xx
1010xx Use next 1 low order
Compare all the cache 1011xx memory address bit to
tags in the set to the high 1100xx determine which cache
order 3 memory address bits 1101xx Set
to tell if the memory block is 1110xX
in the cache 1111xx

~ "\ ="
) 7

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

Another Reference String Mapping x
\

 Consider the main memory word reference string
. 0404040 4

O Miss 4 Mmiss O Mmiss 4 Mmiss
Ol A 00 A 0l
00 | Mem(0) 00- | Mem(0Y. 0% |Mem(a). " 06— |Mem(0). 4

O miss 01 4 miss 00 O miss, o1 4 miss

: i 4 0 .
0% |Mem(&). ~ 00 |Mem(0). 0t |Mem(4). 00- | Mem(0).

= 8 requests, 8 misses

» Ping pong effect due to conflict misses - two memory
- locations that map into the same cache block

A@‘

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 8

Another Reference String Mapping

 Consider the main memory word reference string

Start with an empty cache —
all blocks initially marked as not valid

O 4040404

=)

= 8 requests, 2 misses

= Solves the ping pong effect in a direct mapped cache due to conflict

misses

A@‘

\

CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

O Miss 4 Mmiss 0 hit 4 hit
000 | Mem(0) 000 | Mem(0) 000 | Mem(0) 000 | Mem(0)
010 | Mem(4) 010 | Mem(4) 010 | Mem(4)

\

Four-Way Set Associative Cache

« 28:=256 sets each with four ways (each with one block)

3130

1312 11

X
Tag .8

Index

IndexV Tag Data V Tag V Tag Data
0 0 0
1 1 1
2 2 2

— ° ? ® ? []

253 253 253
254 254 254
255 255 255

O

Sa

=

253
254
255

2% /Byte offset

Sa

CJ

=)

A@‘

V Tag Data
o ®
? ~+.32

Hit

v

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH Data

|
A\4x1 select /

10

MIPS Direct Mapped Cache Example x
\

« One word/block, cache size = 1K words

3130 312 2 0 Byte
1 . 1312 11 ... 1
K/ offset
Hit Tag \|~20 10 Data
1 Index
Index Valid Tag Data
0
1
2
) > []
102i
1022
1023
120 32

What kind of locality are we taking advantage of?

~ "\ ="
\Q\ 11

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

Range of Set Associative Caches

« For a fixed size cache

Used for tag compare Selects the set Selects the word in the block
Taé Inélex Block bﬁset Byte pffset

— > Increasing associativity

Decreasing associativity — «—

. Fully associative
Direct mapped }‘7 | (only one set)
(only one way) Tag is all the bits except
Smaller tags block and byte offset

;\9‘

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

12

Cache Associativity

e, G

<

A

]!

\\J@%:

C—~_

SC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

13

Costs of Set Associative Caches
\
* N-way set associative cache costs 3%

* N comparators (delay and area)
 MUX delay (set selection) before data is available
* Data available after set selection and Hit/Miss decision.

« When a miss occurs,
which way’s block do we pick for replacement ?

* Least Recently Used (LRU):
the block replaced is the one that has been unused for the
longest time

* Must have hardware to keep track of when each way’s block was
used

* For 2-way set associative, takes one bit per set —
set the bit when a block is referenced
(and reset the other way’s bit)

e ® Random

~

AN

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH 14

Benefits of Set Associative Caches

* The choice of direct mapped or set associative depends on the cost
of a miss versus the cost of implementation

12
4KB
10 - 8KB
-+ 16KB
g 8 1 - 32KB
X o —+ 64KB
0
0 — 128KB
= 4. % = ¥ | 256KB
| — —--512KB
2 |
— —— o *
0 | |
1-way 2-way 4-way 8-way Data from Hennessy & Patterson,

Associativity

Computer Architecture, 2003

) @9- = Largest gains are in going from direct mapped to 2-way

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

\

15

Reducing Cache Miss Rates by multiple levels X
\

L1 cache L2 cache L3 cache

« Enough room on the die for bigger L1 caches or for a second level of
caches — normally a unified L2 cache (i.e., it holds both instructions and
data) and in some cases even a unified L3 cache

* For our example,
* CPLigq of 2,
« 100 cycle miss penalty (to main memory),
e 36% load/stores,
e a2%(4%)L1I$ (D$) miss rate,
e add a UL2$ that has a 25 cycle miss penalty and a 0.5% miss rate

CPT . = 2 + .02x25 + 36x.04%x25 + .0065x100 +
.36 x.005x100 = 3.54
(as compared to 5.44 with no L2%$)

=)

A@‘
¥ (CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

16

Multilevel Cache Design Considerations \3\%
\

« Design considerations for L1 and L2 caches are very
different

* Primary cache should focus on minimizing hit time in support
of a shorter clock cycle

« Secondary cache should focus on reducing miss rate to
reduce the penalty of long main memory access times

« The miss penalty of the L1 cache is significantly reduced by
the presence of an L2 cache — so it can be smaller (i.e.,
faster) but have a higher miss rate

* For the L2 cache, hit time is less important than miss rate
« The L2%$ hit time determines L1$’s miss penalty

=)

A@‘
¥ (CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

17

Key Cache Design Parameters

L1 typical L2 typical
Total size (blocks) 250 to 2000 |[4000 to
250,000
Total size (KB) 16 to 64 500 to 8000
Block size (B) 32 to 64 32 to 128
Miss penalty (clocks) 10 to 25 100 to 1000

Miss rates

2% to 5%

0.1% to 2%

=)

49‘

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

18

Two Machines’ Cache Parameters

\

Intel P4 AMD Opteron
L1 organization Split 1$ and D$ Split 1$ and D$
L1 cache size 8KB for D$, 96KB for trace | 64KB for each of 1$ and D$
cache (—~19%)
L1 block size 64 bytes 64 bytes
L1 associativity 4-way set assoc. 2-way set assoc.
L1 replacement ~ LRU LRU
L1 write policy write-through write-back
L2 organization Unified Unified
L2 cache size 512KB 1024KB (1MB)
L2 block size 128 bytes 64 bytes
L2 associativity 8-way set assoc. 16-way set assoc.
L2 replacement ~LRU ~LRU
_ L2 write policy write-back write-back

~ ="
) 19

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

OPT: Optimal Replacement Policy

The Optimal Replacement Policy

@ Replacement Candidates : On a miss any replacement policy
could either choose to replace any of the lines in the cache or
choose not to place the miss causing line in the cache at all.

@ Self Replacement : The latter choice is referred to as a
self-replacement or a cache bypass

Optimal Replacement Policy
On a miss replace the candidate to which an access is least
imminent [Belady1966 Mattson 1970, McFarling-thesis]

@ Lookahead Window : Window of accesses between miss causing

access and the access to the least imminent replacement
candidate. Single pass simulation of OPT make use of lookahead

windows to identify replacement candidates and modify current
cache state [Sugumar-SIGMETRICS1993]

OPT: HEYTIEBLTLVEWEDZEETHRZ 5.

@D MICRO-40 Emulating Optimal Replacement with a Shepherd Cache
CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

Example Behavior of Optimal Replacement Policy

\
Understanding OPT

AN A A 'A A ‘A 'A 'A 'A 'A 'A
Access Sequence 5} 6311 4151 217517776 78
OPTorderfor Asf 1(g: 111 12130141 1 1

I I I I I I I I o=
PPdetrfnr%ﬁ b o2tz b b g

@ Consider 4 way associative cache with one set initially containing lines
(A1,.42 .43 44), consider the access stream shown in table
@ Access 45 misses, replacement decision proceeds as follows

& Identify replacement candidates - (4 Ay 43 A4 A45)
& Lookahead and gather imminence order : shown in table,
lookahead window circled

& Make replacement decision : 4s replaces 4>
@ Ag self-replaces, lookahead window and imminence order in table

@D MICRO-40 Emulating Optimal Replacement with a Shepherd Cache
CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

The Cache Design Space

« Several interacting dimensions

cache size

block size

associativity

replacement policy
write-through vs write-back
write allocation

» The optimal choice is a compromise

depends on access characteristics
« workload
e TI-cache, D-cache

depends on technology / cost

« Simplicity often wins

=)

A@‘

& CSC.T363 Computer Architecture, Department of Computer Science, TOKYO TECH

Cache Size

y

A

Bad

Good

\

Associativity

Block Size

FMTor B

Less More

22

