証明:

 $A^*A = V\Sigma^T U^*U\Sigma V^* = (V)\Sigma^T \Sigma (V^*)$ となるので, A^*A の固有値は $\sigma_1^2, \sigma_2^2, \ldots, \sigma_r^2, 0, \ldots, 0$ となる。ただし,r は A^*A のランクである。よって,定理の主張が示せた。 AA^* についても同様である。

- 1. 上記の定理から, $m \ge n$ の場合,行列 $A \in \mathbb{C}^{m \times n}$ の特異値分解を得るためにはまず $A^*A \in \mathbb{C}^{n \times n}$ の固有値分解を行い, $A^*A = P\Lambda P^*$ を計算する. A^*A は対称行列になっていることに注意.
- 2. つぎに、 $\mathbf{\Lambda} \in \mathbb{R}^{n \times n}$ の対角要素($\mathbf{A}^* \mathbf{A}$ の固有値)の平行根を $\sigma_1, \sigma_2, \ldots, \sigma_n$ として、正のものだけをその順番に $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$ の対角におく.
- 3. $P = V \in \mathbb{C}^{n \times n}$ とおき、最後に $A = U \Sigma V^*$ となるように、ユニタリ行列 $U \in \mathbb{C}^{m \times m}$ を求める。定理 1 3. 1 からわかるように、行列 A の特異値は一意であるが、その特異値分解は一意ではないので U を計算するときに自由度がある.

[問題 13-01] 例 1 ,例 2 に出てくる行列の特異値分解を上記の方法を用い確かめよ.

13.3 Moore-Penrose 形一般逆行列

定義 $1 3.7 : A \in \mathbb{C}^{m \times n}$ の特異値分解を $U\Sigma V^*$ とすると A の Moore-Penrose 一般逆行列を $A^{\dagger} = V\Sigma^{\dagger}U^*$ と定義する. ただし, $\Sigma^{\dagger} \in \mathbb{R}^{n \times m}$ の対角行列でその要素は

$$\begin{cases} \frac{1}{\sigma_j} &, & \text{if } \sigma_j > 0 \\ 0 &, & \text{if } \sigma_j = 0 \end{cases}$$

として定められている.

上記の $A^{\dagger}\in\mathbb{C}^{n\times m}$ は A の 疑似逆行列 とよばれることもあり、以下の性質を満す唯一の行列 $X\in\mathbb{C}^{n\times m}$ である.

- 1. AXA = A
- 2. XAX = X
- 3. $(AX)^* = AX$
- 4. $(XA)^* = XA$

当然ながら、 $\operatorname{rank}(\boldsymbol{A})=n$ $(\leq m)$ のとき $\boldsymbol{A}^\dagger=(\boldsymbol{A}^*\boldsymbol{A})^{-1}\boldsymbol{A}^*$ であり、 $\operatorname{rank}(\boldsymbol{A})=n=m$ であるとき $\boldsymbol{A}^\dagger=\boldsymbol{A}^{-1}$ である.

このことから A の Moore-Penrose 一般逆行列は $||Ax - b||_2$ の最小ノルムを満すベクトル x のなか でさらに最小ノルムのものを実現するベクトル $\bar{x} = A^{\dagger}b$ に関連していることがわかる.