本日の演習問題

$$X[z] = \frac{4z^2 - z}{2z^2 - 2z + 1}$$
 をべき級数展開法を用いて逆z変換 $x[n]$ を求めよ。
但し、 $n=3$ までで良い。

$$2z^{2}-2z+1) 4z^{2}-z$$

$$4z^{2}-4z+2$$

$$x(0)=2$$

$$x(1)=1.5$$

$$x(2)=0.5$$

$$x(3)=-0.25$$

$$2+1.5z^{-1}+0.5z^{-2}-0.25$$

$$3z-2$$

$$1-1.5z^{-1}$$

$$1-z^{-1}+0.5z^{-2}$$

$$-0.5z^{-1}-0.5z^{-2}$$

$$-0.5z^{-1}+0.5z^{-2}-0.25z^{-3}$$

. . .

離散フーリエ変換に関する出題

 $\rightarrow A=1, B=1$

ある波 x(t) を2秒の間隔(つまり、0.5Hz)でサンプリングしたところ、 $\{2,0,2,0\}$ のデータを得た。離散フーリエ変換を用いて、x(t) を求める。

まず、離散フーリエ変換は
$$F[k] = \sum_{n=0}^{N-1} f[n] e^{-i\frac{2\pi}{N}kn}$$
であるから、データの離散フーリエ変換は DC 成分 $F[0] = f[0] + f[1] + f[2] + f[3] = 4$ $\frac{1}{4} \times 0.5$ Hz=1/8Hz $F[1] = f[0] + f[1] e^{-\frac{2\pi}{4}i} + f[2] e^{-\frac{4\pi}{4}i} + f[3] e^{-\frac{6\pi}{4}i} = 0$ $\frac{2}{4} \times 0.5$ Hz=1/4Hz $F[2] = f[0] + f[1] e^{-\frac{4\pi}{4}i} + f[2] e^{-\frac{8\pi}{4}i} + f[3] e^{-\frac{12\pi}{4}i} = 4$ $\frac{-1}{4} \times 0.5$ Hz=-1Hz $F[3] = f[0] + f[1] e^{-\frac{6\pi}{4}i} + f[2] e^{-\frac{12\pi}{4}i} + f[3] e^{-\frac{18\pi}{4}i} = 0$ 以上より $x(t) = A + B \cos\left(2\pi\frac{1}{4}t\right)$ と置くことができる $x(0) = A + B = 2$ $x(2) = A - B = 0$ よって $x(t) = 1 + \cos\left(\frac{\pi}{2}t\right)$

ラプラス変換に関する出題

(1)
$$f(t) = e^{2t} + t + 2$$

 $F(s) = \frac{1}{s-2} + \frac{1}{s^2} + \frac{2}{s}$

$$(2) f(t) = \cos 3t + \cosh 3t$$

$$F(s) = \frac{s}{s^2 + 9} + \frac{1}{2} \frac{1}{s - 3} + \frac{1}{2} \frac{1}{s + 3} = \frac{2s^3}{s^4 + 81}$$

$$(3) F(s) = \frac{s}{(s+1)(s+2)}$$

$$= \frac{2}{s+2} - \frac{1}{s+1} \quad f(t) = 2e^{-2t} - e^{-t}$$

$f(t) = \mathcal{L}^{-1}(F(s))$		$F(s) = \mathcal{L}(f(t))$	
1		1	(, 0)
		<u>S</u>	(s>0)
t	(t>0)	$\frac{1}{s^2}$	(s>0)
t ⁿ⁻¹ nは自然数		1	
(n-1)!	(t>0)	\overline{S}^n	(s>0)
1		1	
$\sqrt{\pi t}$	(t>0)	\sqrt{S}	(s>0)
$e^{\lambda t}$		_1_	
e	(<i>t</i> ≧0)	$s - \lambda$	$(s>\lambda)$
200 14	:	<i>S</i>	
$\cos \lambda t$	(<i>t</i> ≧0)	$s^2 + \lambda^2$	(s>0)
gin 14		λ	
$ $ $\sin \lambda t$	$(t \ge 0)$	$s^2 + \lambda^2$	(s>0)

(4)
$$F(s) = \frac{1}{s^2(s^2 + \lambda^2)} = \frac{1/\lambda^2}{s^2} - \frac{1/\lambda^2}{s^2 + \lambda^2} = \frac{1}{\lambda^2} \left(t - \frac{1}{\lambda}\sin \lambda t\right)$$

$$f(t) = t * \frac{\sin \lambda t}{\lambda} = \frac{1}{\lambda} \int_{0}^{t} (t - \tau) \sin \lambda \tau d\tau = \frac{1}{\lambda} \left[\frac{-(t - \tau)}{\lambda} \cos \lambda t \right]_{0}^{t} - \int_{0}^{t} \frac{1}{\lambda^{2}} \cos \lambda \tau d\tau$$

ラプラス変換を用いた微分方程式の出題

次の微分方程式のラプラス変換を使って求めよ。

(1)
$$x''+4x'+3x=0, x(0)=0, x'(0)=2$$

$$(s^2 + 4s + 3)X = 2$$
, $X = \frac{1}{s+1} - \frac{1}{s+3}$, $x(t) = e^{-t} - e^{-3t}$

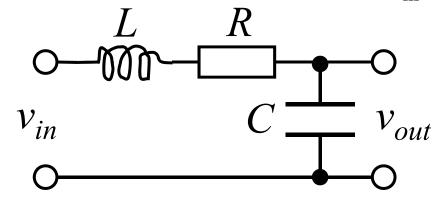
(2)
$$x'' + 4x' + 3x = e^{-2t}$$
, $x(0) = 0$, $x'(0) = 3$

$$(s^2 + 4s + 3)X = 3 + \frac{1}{s+2}, \quad X = \frac{2}{s+1} - \frac{1}{s+2} - \frac{1}{s+3}$$

$$x(t) = 2e^{-t} - e^{-2t} - e^{-3t}$$

電気回路に関する出題

下記の電気回路の伝達関数を求めよ。入力は v_{in} , 出力は v_{out} とする。



微分方程式

$$\begin{cases} v_{in} = L\frac{di}{dt} + Ri + \frac{1}{C}\int idt & LC\frac{d^{2}v_{out}}{dt^{2}} + RC\frac{dv_{out}}{dt} + v_{out} = v_{in} \\ v_{out} = \frac{1}{C}\int idt & 伝達関数 W(s) \\ W(s) & 1 \end{cases}$$

$$LC\frac{d^{2}v_{out}}{dt^{2}} + RC\frac{dv_{out}}{dt} + v_{out} = v_{in}$$

$$W(s) = \frac{1}{LCs^2 + RCs + 1}$$