2017 2Q Wireless Communication Engineering

#5 Demodulation and Detection Error due to Noise

Kei Sakaguchi sakaguchi@mobile.ee. June 26, 2017

Course Schedule (1)

	Date	Text	Contents
#1	June 12	1, 7	Introduction to wireless communication systems
#2	June 15	2, 5, etc	Link budget design of wireless access
#3	June 19		Up/down conversion and equivalent baseband system
#4	June 22	3.3, 3.4	Digital modulation and pulse shaping
#5	June 26	3.5	Demodulation and detection error due to noise
#6	June 29		Collaborative exercise for better understanding 1
#7	July 3	4.4	Channel fading and diversity combining
#8	July 6	4.6	Error correction coding

From Previous Lecture

Digital modulation

$$s_{\rm D}(t) = s_{\rm DI}(t) + js_{\rm DQ}(t) = f(m(t)) -$$
• Amplitude
• Phase
• Frequency

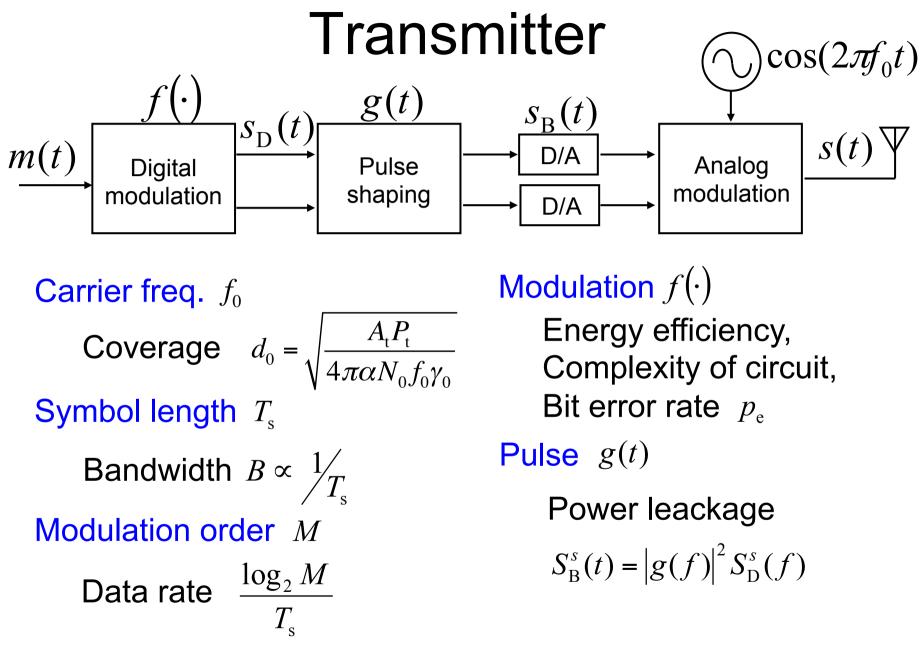
Data rate, power efficiency, complexity, error rate

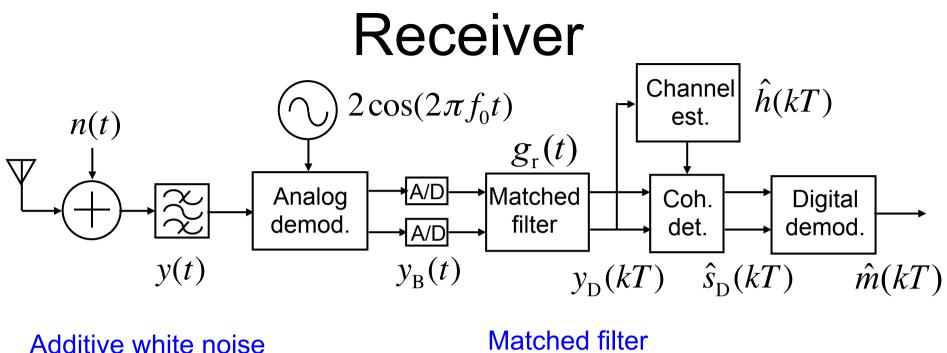
Pulse shaping (band limitation)

$$s_{\rm B}(t) = \int g(\tau) s_{\rm D}(t-\tau) \,\mathrm{d}\tau$$

• Nyquist
• Gaussian

Bandwidth, error rate


IQ analog modulation

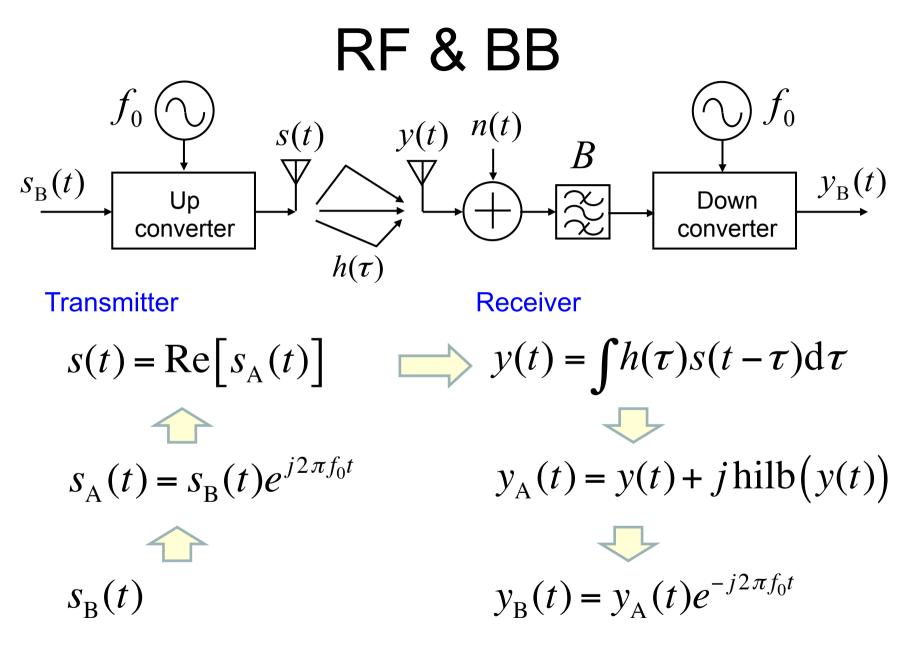

$$s(t) = s_{\rm BI}(t)\cos(2\pi f_{\rm c}t) - s_{\rm BQ}(t)\sin(2\pi f_{\rm c}t)$$

Carrier frequency

Contents

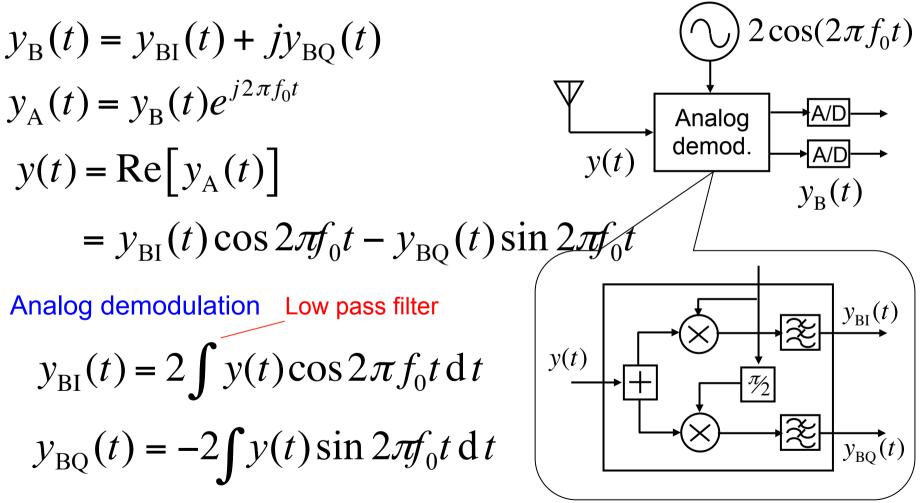
- Structure of receiver
- Analog demodulation
- Matched filter
- Coherent detection
- Error rate of BPSK signal
- Demonstration

Additive white hoiseMatched hiterThermal noise generated in receiverMaximization of SNRBandpass fileterCoherent detection


Inter system interference cancellation Compensation of channel response

Analog demodulation

Digital demodulation

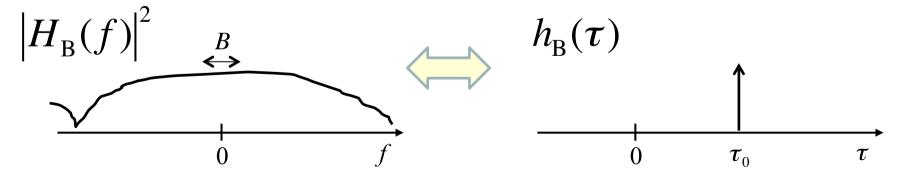

Convert signal from RF to BB

Convert complex signal to message

Analog Demodulation

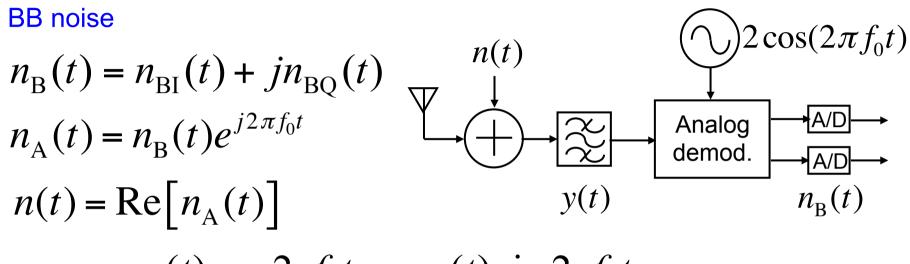
BB receive signal

Narrow Band System


Equivalent BB system

$$y_{\rm B}(t) = \int h_{\rm B}(\tau) \tilde{s}_{\rm B}(t-\tau) \mathrm{d}\tau$$

$$h_{\rm B}(\tau) = h(\tau)e^{-j2\pi f_0\tau}$$


Narrow band assumption

$$y_{\rm B}(t) = h_{\rm B}(\tau_0)\tilde{s}_{\rm B}(t-\tau_0) = h_{\rm B}s_{\rm B}(t) = |h_{\rm B}|e^{j\theta_0}s_{\rm B}(t)$$

June 26, 2017

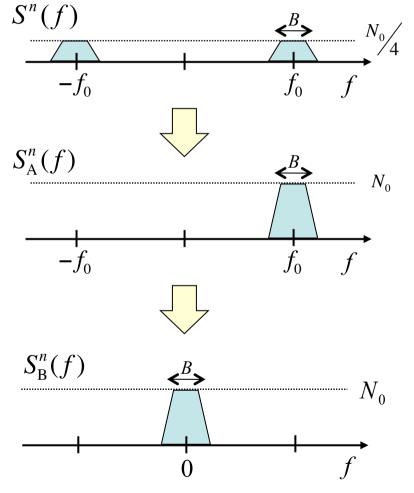
Noise

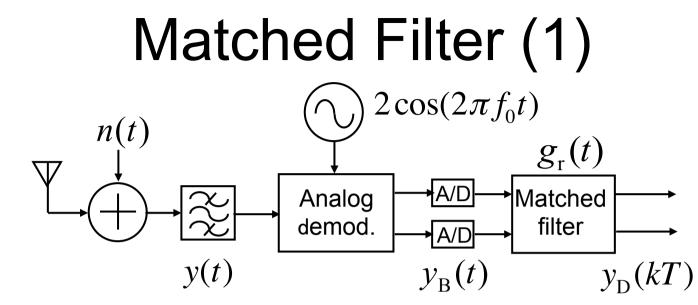
$$= n_{\rm BI}(t) \cos 2\pi f_0 t - n_{\rm BQ}(t) \sin 2\pi f_0 t$$

Analog demodulation

$$n_{\rm BI}(t) = 2\int n(t)\cos 2\pi f_0 t \,\mathrm{d}\,t$$
$$n_{\rm BQ}(t) = -2\int n(t)\sin 2\pi f_0 t \,\mathrm{d}\,t$$

June 26, 2017


Property of Noise

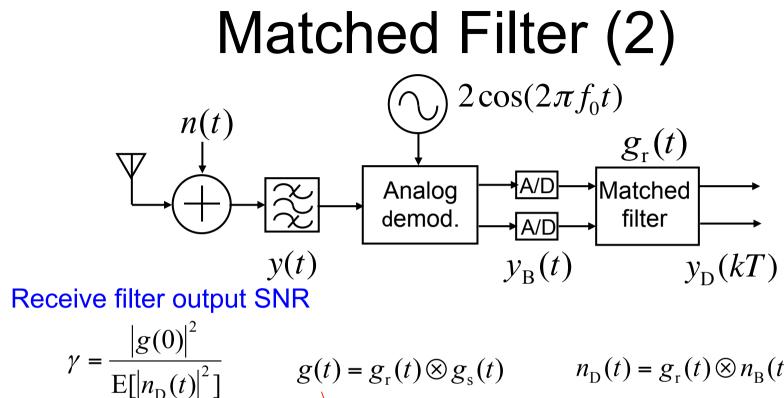

Noise power

$$P_{\rm n} = P_{\rm nI} + P_{\rm nQ} = N_0 B = \sigma^2$$

PDF of noise

$$p(n_{\rm I}) = p(n_{\rm Q}) = \frac{1}{\sqrt{\pi\sigma^2}} e^{-\frac{n_x^2}{\sigma^2}}$$
$$E[n_{\rm I}] = E[n_{\rm Q}] = 0$$
$$E[n_{\rm I}|^2] = E[n_{\rm Q}|^2] = \frac{\sigma^2}{2}$$

BB received signal


 $y_{\rm B}(t) = h_{\rm B}s_{\rm B}(t) + n_{\rm B}(t)$

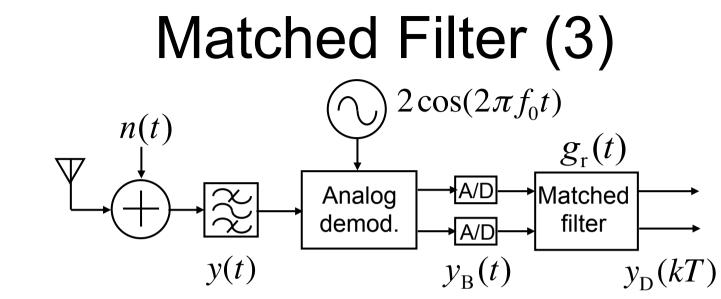
BB transmit signal

$$s_{\rm B}(t) = g_{\rm s}(t) \otimes s_{\rm D}(t) = \sum_n a_n g_{\rm s}(t - nT)$$

Output of receiver filter

$$y_{\rm D}(t) = g_{\rm r}(t) \otimes y_{\rm B}(t) = g_{\rm r}(t) \otimes g_{\rm s}(t) \otimes s_{\rm D}(t) + g_{\rm r}(t) \otimes n_{\rm B}(t)$$

$$g(t) = g_{r}(t) \otimes g_{s}(t)$$
 $n_{D}(t) = g_{r}(t) \otimes n_{B}(t)$


Combined pulse of transmitter & receiver

Frequency domain analysis

Signal power $\left|g(0)\right|^{2} = \left|\int G_{\rm r}(f)G_{\rm s}(f)df\right|^{2}$ Noise power

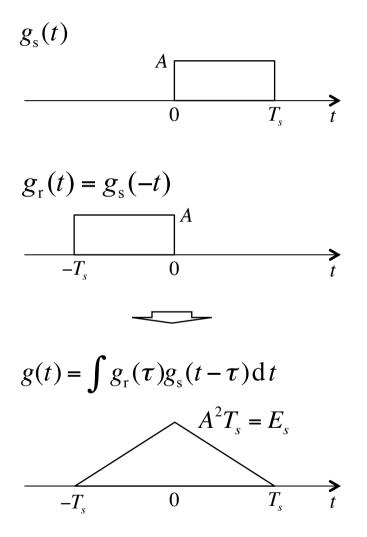
$$E[|n_{\rm D}(t)|^2] = N_0 \int |G_{\rm r}(f)|^2 df$$

June 26, 2017

Schwarz inequality

$$|g(0)|^2 = |\int G_{\rm r}(f)G_{\rm s}(f)df|^2 \le \int |G_{\rm r}(f)|^2 df \int |G_{\rm s}(f)|^2 df$$

Matched filter (SNR maximization)


$$G_{\rm r}(f) = (G_{\rm s}(f))^* \qquad g_{\rm r}(t) = g_{\rm s}(-t)$$

Maximum SNR Parseval's theorem Energy of transmit pulse

$$\gamma = \frac{|g(0)|^2}{\mathrm{E}[|n(t)|^2]} \leq \frac{1}{N_0} \int |G_{\mathrm{s}}(f)|^2 \,\mathrm{d}\, f = \frac{1}{N_0} \int |g_{\mathrm{s}}(t)|^2 \,\mathrm{d}\, t = \frac{E_{\mathrm{s}}}{N_0} = \frac{P_{\mathrm{s}}T_{\mathrm{s}}}{N_0} = \frac{P_{\mathrm{s}}}{N_0B} = \frac{P_{\mathrm{s}}}{\sigma^2}$$

June 26, 2017

Example of Matched Filter

 $n_{\rm B}(t)$

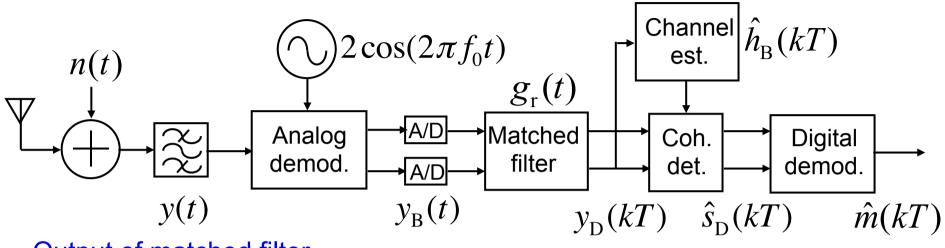
$$g_{r}(t) = g_{s}(-t)$$

$$A$$

$$-T_{s} \qquad 0 \qquad t$$

$$n_{\rm D}(t) = \int g_{\rm r}(\tau) n_{\rm B}(t-\tau) dt$$

$$E\left[\left|n_{\rm D}(t)\right|^{2}\right] = N_{0} \int \left|G_{\rm r}(f)\right|^{2} df = A^{2}T_{s}N_{0}$$


$$\underbrace{N_{\rm M}}_{0} \underbrace{M_{\rm M}}_{0} \underbrace{M_{\rm M}}_{t} \underbrace{M_{\rm M}}_{t}$$

Detection Schemes

Received signal

Detection	Modulation	Demodulation
Envelope	ASK	$\hat{s}_{\mathrm{D}}(k) = \frac{ \mathcal{Y}_{\mathrm{D}}(k) }{ h_{\mathrm{B}} }$
Correlation	FSK	$\int y_{\rm B}(t) \exp(j\pi\Delta ft) dt \bigg \ge \le \int y_{\rm B}(t) \exp(-j\pi\Delta ft) dt$
Differential	Differential mod. $\widetilde{\theta}(k) = \theta(k) + \theta(k-1)$	$\hat{s}_{\mathrm{D}}(k) = \frac{y_{\mathrm{D}}(k)}{y_{\mathrm{D}}(k-1)}$
Coherent	PSK, QAM, MSK	$\hat{s}_{\rm D}(t) = \frac{\mathcal{Y}_{\rm D}(t)}{h_{\rm B}}$

Coherent Detection

Output of matched filter

$$y_{D}(t) = g(t) \otimes h_{B}s_{D}(t) + g_{r}(t) \otimes n_{B}(t)$$

$$y_{D}(k) = h_{B}s_{D}(k) + n_{D}(k)$$

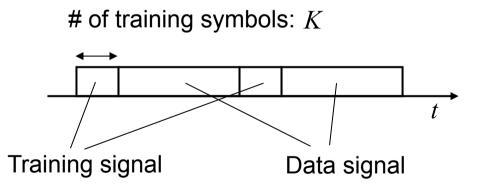
$$x_{D}(k) = h_{B}s(k) + n(k)$$
Coherent detection
$$\hat{s}(k) = y(k)/\hat{h}_{B}$$
Compensation of channel response
Coherent detection
$$f(k) = y(k)/\hat{h}_{B}$$
Compensation of channel response
Coherent detection

Digital demodulation

 $\hat{m}(k) = f^{-1}(\hat{s}(k))$

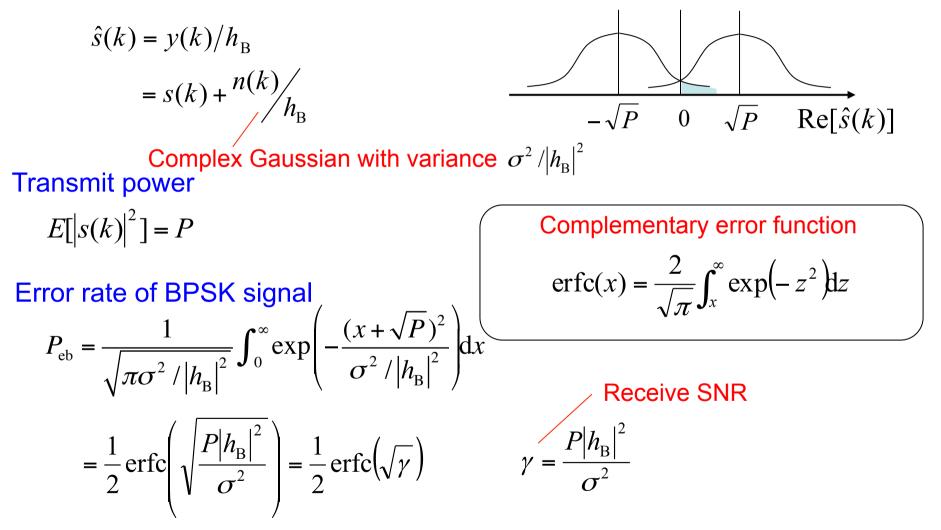
for each modulation method of ASK, PSK, FSK

June 26, 2017

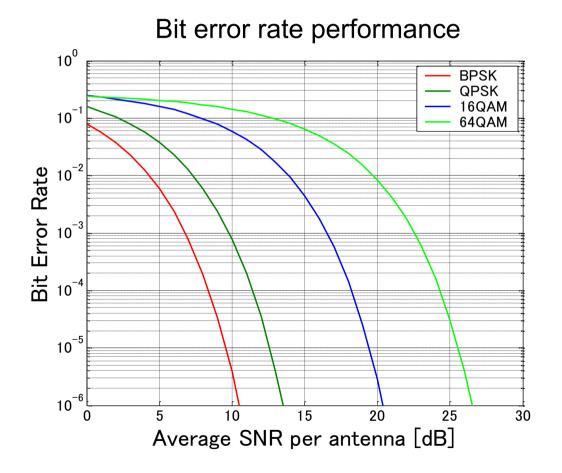

Channel Estimation Output of matched filter $y(k) = h_{B}s_{TR}(k) + n(k)$ $g_{r}(t)$ $g_{r}(t)$

Training signal Channel estimation

$$\widetilde{h}_{\rm B} = \frac{y(k)}{s_{\rm TR}}(k)$$


$$\hat{h}_{\rm B} = \frac{1}{K} \sum_{k=1}^{K} \widetilde{h}_{\rm B}(k)$$

Frame structure of transmit signal



Error Rate of BPSK Signal

Output of coherent detection

Error Rate Performance

Summary

Analog demodulation & matched fileter

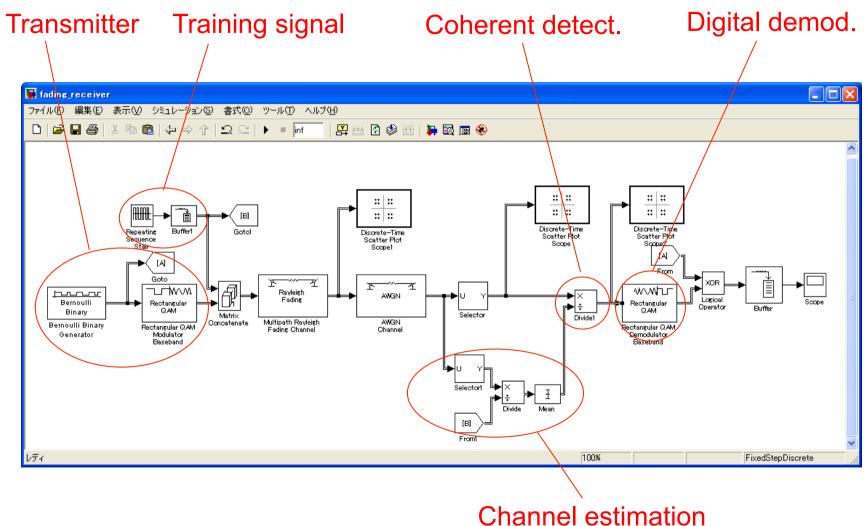
$$y(t) = \operatorname{Re}[hs_{B}(t)\exp(j2\pi f_{0}t)] \longrightarrow y_{B}(t) = h_{B}s_{B}(t) + n_{B}(t)$$
$$y_{D}(t) = g(t) \otimes h_{B}s_{D}(t) + g_{r}(t) \otimes n_{B}(t)$$

Channel estimation & coherent detection

$$\hat{h}_{\rm B} = \frac{1}{K} \sum_{k=1}^{K} \frac{y(k)}{s_{\rm TR}} (k) \longrightarrow \hat{s}(k) = y(k)/h_{\rm B} = s(k) + n(k)/h_{\rm B}$$

Error rate of BPSK signal

$$P_{\rm eb} = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{P|h_{\rm B}|^2}{\sigma^2}}\right) = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\gamma}\right)$$


$$P_{\rm eb} \approx \frac{2}{\log_2 M} \left(1 - \frac{1}{\sqrt{M}} \right) \operatorname{erfc} \left(\sqrt{\frac{E_0 |h_{\rm B}|^2}{\sigma^2}} \right)$$

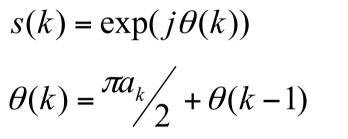
Nyquist matched fileter

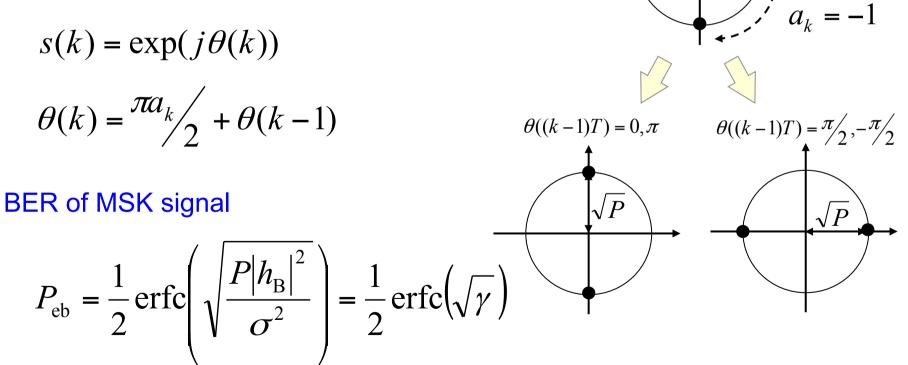
$$g(t) = g_{r}(t) \otimes g_{s}(t) = g_{s}(-t) \otimes g_{s}(t)$$

$$g(0) = \int G(f) df = 1 \int |G_{r}(f)|^{2} df = 1$$

Demo

Error Rate of MSK


Constellation


 $a_{k} = 1$

Output of coherent detection

$$\hat{s}(k) = s(k) + \frac{n(k)}{h_{\rm B}}$$

MSK modulation

Error Rate of QPSK Signal

QPSK

 S_1

 P_{2}

SQT

 $-\sqrt{P/2}$

Output of coherent detection

$$\hat{s}(k) = y(k)/h_{\rm B}$$
$$= s_{\rm I}(k) + js_{\rm Q}(k) + \frac{n(k)}{h_{\rm B}}$$

Transmit power

$$E[|s_{I}(k)|^{2}] = E[|s_{Q}(k)|^{2}] = \frac{P}{2}$$

Bit error rate

$$P_{\rm eb} = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{P|h_{\rm B}|^2}{2\sigma^2}}\right) = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{\gamma}{2}}\right) \quad \text{Proportional to SNR per bit}$$

Symbol error rate

$$P_{\rm es} = 1 - (1 - P_{\rm eb})(1 - P_{\rm eb}) = 2P_{\rm eb} - P_{\rm eb}^2 \approx 2P_{\rm eb}$$

June 26, 2017

Error Rate of QAM Signal

Symbol error rate

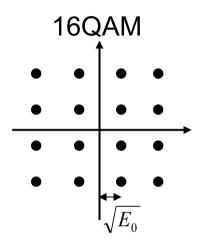
$$P_{\rm es} = 1 - (1 - P_{\rm esI})(1 - P_{\rm esQ}) \cong 2P_{\rm esI} = 2P_{\rm esQ}$$

$$P_{\rm esI} = \left(\frac{\sqrt{M} - 2}{\sqrt{M}}\right) \times 2P_{\rm eb}^{\rm BPSK} + \left(\frac{2}{\sqrt{M}}\right) \times P_{\rm eb}^{\rm BPSK}$$

Center Two edges

$$= \left(1 - \frac{1}{\sqrt{M}}\right) \operatorname{erfc}\left(\sqrt{\frac{E_0 |h_{\rm B}|^2}{\sigma^2}}\right)$$

Transmit power


$$P = 2\left(\frac{2E_0}{\sqrt{M}}\sum_{i=1}^{\sqrt{M/2}} (2i-1)^2\right) = \frac{2(M-1)E_0}{3}$$

Bit error rate

$$P_{\rm eb} \cong \frac{1}{\log_2 M} P_{\rm es} -$$

Symbol error corresponds to one bit error owing to Gray coding

June 26, 2017

