2017 2Q Wireless Communication Engineering

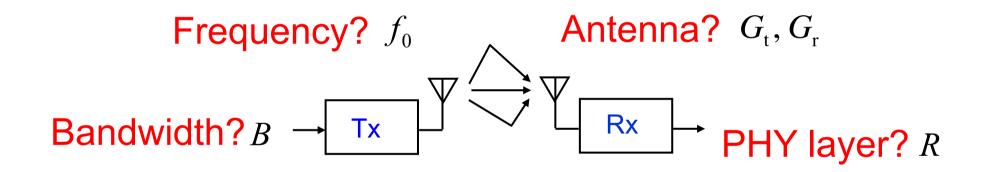
#2 Link Budget Design for Wireless Access

Kei Sakaguchi sakaguchi@mobile.ee.
June 15, 2017

Course Schedule (1)

	Date	Text	Contents
#1	June 12	1, 7	Introduction to wireless communication systems
#2	June 15	2, 5, etc	Link budget design of wireless access
#3	June 19		Up/down conversion and equivalent baseband system
#4	June 22	3.3, 3.4	Digital modulation and pulse shaping
#5	June 26	3.5	Demodulation and detection error due to noise
#6	June 29		Collaborative exercise for better understanding 1
#7	July 3	4.4	Channel fading and diversity combining
#8	July 6	4.6	Error correction coding

From Previous Lecture

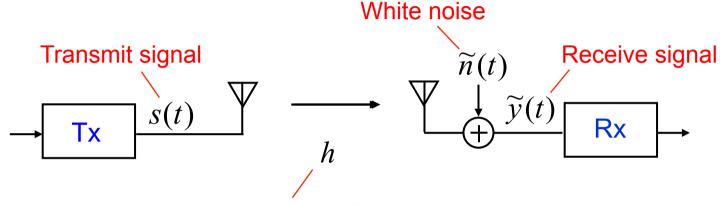

- Introduction to wireless communication systems BAN, PAN, LAN, MAN, ITU, PHY, MAC
- Design of wireless communication systems
 Frequency, Bandwidth, Tx power, Antenna, PHY scheme
- Factor of performance degradation
 Fading, Inter symbol interference, Inter system interference
- IEEE802.11a WLAN
 WLAN using OFDM and adaptive modulation coding

Contents

- Channel capacity
- Bandwidth & frequency
- Signal-to-Noise Ratio (SNR)
- Antenna & coverage
- Multiple access
- Design of wireless access

Design of Wireless Communication Systems

How to design wireless communication systems?



Transmit power? P_t

MAC layer? N_{UE}

System Model

System model of wireless communications

Response of propagation channel

■ Receive signal

Linear time invariant system:
$$\widetilde{y}(t) = hs(t) + \widetilde{n}(t)$$

Signal-to-Noise Ratio

Complex system model

$$s(t) = s_{\mathrm{R}}(t) + js_{\mathrm{I}}(t) \longrightarrow \operatorname{Transmit power} P_{\mathrm{t}} = \mathrm{E} \left[\left| s(t) \right|^{2} \right]$$

$$\tilde{n}(t) = \tilde{n}_{\mathrm{R}}(t) + j\tilde{n}_{\mathrm{I}}(t) \longrightarrow \operatorname{Noise power} P_{\mathrm{n}} = \mathrm{E} \left[\left| \tilde{n}(t) \right|^{2} \right]$$

$$h = h_{\mathrm{R}} + jh_{\mathrm{I}} \longrightarrow \operatorname{Channel gain} G_{\mathrm{h}} = |h|^{2}$$

■ Signal-to-Noise Ratio

Most important parameter to qualify the system

$$\gamma = \frac{G_{\rm h}P_{\rm t}}{P_{\rm n}} = \frac{P_{\rm r}}{P_{\rm n}}$$

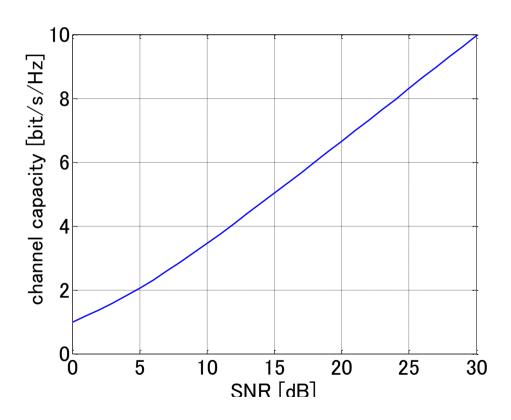
Channel Capacity

■ Channel capacity of complex system

Theoretical upper bound of achievable data rate

Bandwidth
$$C = C_{R} + C_{I} = B \log_{2} \left(1 + \frac{G_{h} P_{t}}{P_{n}}\right) = B \log_{2} \left(1 + \gamma\right) \quad [bps]$$

$$SNR$$


$$= B \times R$$

Bit rate (spectrum efficiency) [bps/Hz]

$$C_{\rm R} = C_{\rm I} = \frac{B}{2} \log_2 \left(1 + \frac{G_{\rm h} P_{\rm t}/2}{P_{\rm n}/2} \right) = \frac{B}{2} \log_2 \left(1 + \gamma \right)$$

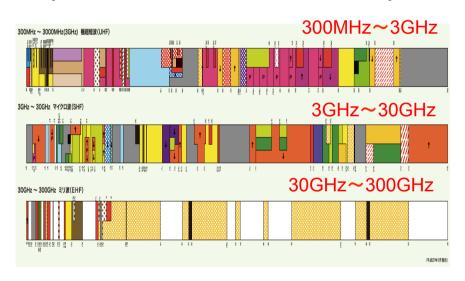
Channel Capacity

$$C = B \log_2(1 + \gamma) \text{ [bps]}$$

Bandwidth & Frequency

■ Frequency & bandwidth

Bandwidth is proportional to center frequency due to available spectrum resource and limitation of RF circuit


$$B = \alpha f_0$$

 f_0 : Center frequency [Hz]

lpha : Relative bandwidth

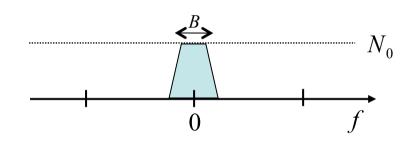
1% is normal

Spectrum allocation in Japan

■ Capacity & frequency

$$C = B \log_2 (1 + \gamma) = \alpha f_0 \log_2 (1 + \gamma)$$

Noise Power & Frequency


Power of thermal noise

Noise power is proportional to center frequency

$$P_{n} = N_{0}B = \alpha N_{0}f_{0}$$

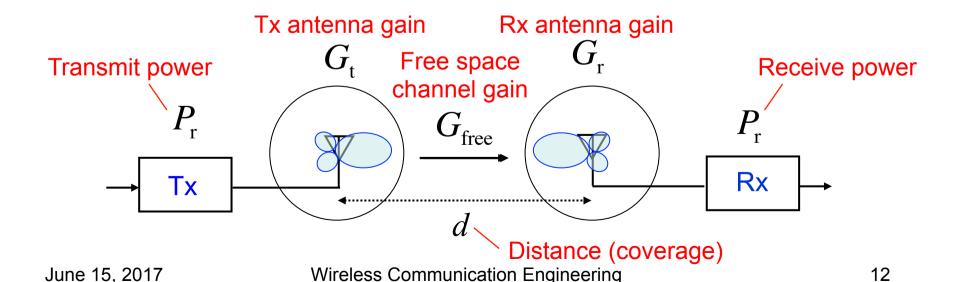
$$N_{0} = kT_{emp}$$

$$k = 1.38 \times 10^{-23} \text{ [Joules/K]}$$

■ Example of noise power

$$T_{\text{emp}} = 290 \text{ [K]}$$

 $kT_{\text{emp}} = -174 \text{ [dBm/Hz]}$
 $B = 10 \text{ [MHz]} \rightarrow P_{\text{n}} = -104 \text{ [dBm]}$


Friis Propagation Model

Friis propagation model

$$P_{\rm r} = A_{\rm r} \frac{G_{\rm t} P_{\rm t}}{4\pi d^2} = \left(\frac{\lambda_0}{4\pi d}\right)^2 G_{\rm r} G_{\rm t} P_{\rm t} = G_{\rm free} G_{\rm r} G_{\rm t} P_{\rm t} = G_{\rm h} P_{\rm t}$$

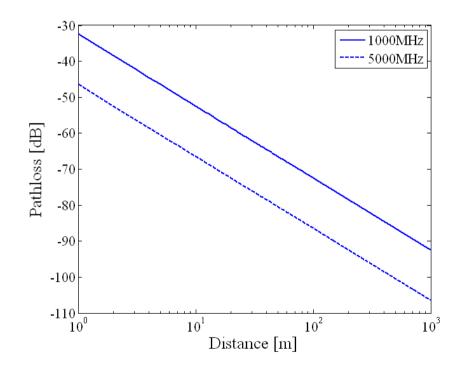
$$A_{\rm r} = G_{\rm r} \, \frac{\lambda_0^2}{4\pi}$$

 $A_{\rm r} = G_{\rm r} \, \frac{\lambda_0^2}{4\pi}$ Effective aperture of antenna is squarely proportional to wavelength

Channel Gain & Frequency

■ Channel gain in free space

Channel gain is inversely proportional to square of distance & center frequency

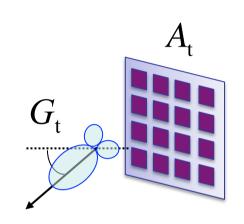

Free space channel gain

$$G_{\text{free}} = \left(\frac{\lambda_0}{4\pi d}\right)^2 = \left(\frac{c}{4\pi f_0 d}\right)^2$$

Example of channel gain

$$f_0 = 5$$
 [GHz], $d = 100$ [m]

$$G_{\text{free}} \cong -85 \text{ [dB]}$$



Antenna Gain & Frequency

Antenna gain

If the size of antenna aperture is fixed, antenna gain is squarely proportional to center frequency

$$A_{t} = G_{t} \frac{\lambda_{0}^{2}}{4\pi} \longrightarrow G_{t} = A_{t} \frac{4\pi}{\lambda_{0}^{2}} = A_{t} \frac{4\pi f_{0}^{2}}{c^{2}}$$

Example of antenna gain

$$f_0 = 1$$
 [GHz], $\lambda_0 = 30$ [cm] \longrightarrow $G_t = 1$

$$f_0 = 30 \text{ [GHz]}, \lambda_0 = 1 \text{ [cm]} \longrightarrow G_t = 900$$

SNR & Frequency

■ SNR

Assuming antenna gain of user terminal is small, SNR is inversely proportional to center frequency and square of distance

Assuming
$$G_r = 1$$

$$\gamma = \frac{G_{\text{free}}G_{\text{t}}P_{\text{t}}}{P_{\text{n}}} = \frac{A_{\text{t}}P_{\text{t}}}{4\pi\alpha N_{0}f_{0}d^{2}}$$

Free space channel gain:

$$G_{\text{free}} = \left(\frac{c}{4\pi f_0 d}\right)^2 \qquad G_{\text{t}} = A_{\text{t}} \frac{4\pi f_0^2}{c^2}$$

Tx antenna gain:

$$G_{\rm t} = A_{\rm t} \frac{4\pi f_0^2}{c^2}$$

Example of SNR

$$P_{t} = 1 \text{[mW]} = 0 \text{[dBm]}$$

$$G_{\text{free}} = -85 \text{[dB]}$$

$$G_{t} = 11 \text{[dB]}$$

$$P_{\rm n} = -104 \text{ [dBm]}$$

 $\gamma = 30 \text{ [dB]}$

$$R \approx 10 \text{ [bps/Hz]}$$

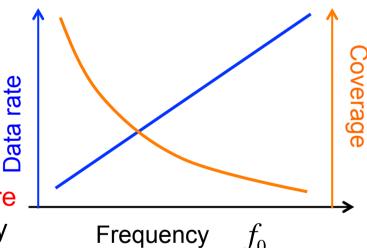
Noise power:

$$P_{\rm n} = \alpha N_0 f_0$$

Coverage

Coverage

Coverage is the maximum distance satisfying minimum required SNR


$$d_0 = \max d$$
 s.t. $\gamma \ge \gamma_0$

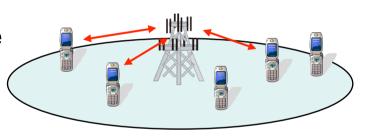
$$\gamma = \frac{G_{\text{free}}G_{\text{t}}P_{\text{t}}}{P_{\text{n}}} = \frac{A_{\text{t}}P_{\text{t}}}{4\pi\alpha N_{0}f_{0}d^{2}}$$

Coverage is inversely proportional to square root of center frequency and controllable by transmit power & antenna aperture

$$d_{0} = \sqrt{\frac{A_{t}P_{t}}{4\pi\alpha N_{0}f_{0}\gamma_{0}}} = \beta f_{0}^{-\frac{1}{2}}$$

Multiple Access

■ User rate


Radio resources are equally divided into multiple users

$$C_{\text{UE}} = \frac{B \log_2 (1 + \gamma)}{N_{\text{UE}}} \quad \text{[bps/user]}$$

 $N_{\rm UE} = \pi d_0^2 \eta$: # of users in the coverage

 η : Density of users [users/m²]

Multiple access

■ Cell (coverage) edge user rate

Cell edge user rate is squarely proportional to center frequency

$$C_{\text{UE0}} = \frac{\alpha f_0 \log_2(1 + \gamma_0)}{\pi d_0^2 \eta} \longrightarrow C_{\text{UE0}} = \frac{\alpha f_0 \log_2(1 + \gamma_0)}{\pi \beta^2 f_0^{-1} \eta} = \delta f_0^2$$

Design of Wireless Access

Passive type

Conventional design of wireless systems:

$$f_0, B, P_t \longrightarrow d_0^{\text{req}} \longrightarrow G_t \longrightarrow C_{\text{UE}0}$$

Active type

System design for higher frequency & small cells:

$$C_{\text{UE}0}^{\text{req}} \longrightarrow N_{\text{UE}}, C \longrightarrow d_0, B, R \longrightarrow f_0, P_{\text{t}}, G_{\text{t}}$$

■ P2P type

Satellite communication, etc.:

$$d_0^{\text{req}}, C_0^{\text{req}} \longrightarrow f_0, B, P_t \longrightarrow R \longrightarrow G_t$$

Summary

Channel capacity

$$C = B \log_2(1 + \gamma) = \alpha \times f_0 \times R$$
 [bps]

Friis propagation model

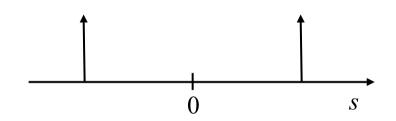
$$P_{\rm r} = \left(\frac{\lambda_0}{4\pi d}\right)^2 G_{\rm r} G_{\rm t} P_{\rm t} \qquad \gamma = \left(\frac{\lambda_0}{4\pi d}\right)^2 \cdot \frac{G_{\rm r} G_{\rm t} P_{\rm t}}{P_{\rm n}}$$

User rate and multiple access

$$C_{\text{UE}} = \frac{B \log_2(1+\gamma)}{N_{\text{UE}}} = \frac{B \log_2(1+\gamma)}{\pi d_0^2 \eta}$$

Design of wireless access systems

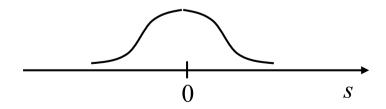
$$C_{\text{UE}0}^{\text{req}} \longrightarrow N_{\text{UE}}, C \longrightarrow d_0, B, R \longrightarrow f_0, P_{\text{t}}, G_{\text{t}}$$


Information & Entropy

■ Information of transmit symbol

P(s): Probability of transmission

$$I(s) = \log_2 \frac{1}{P(s)} = -\log_2 P(s)$$

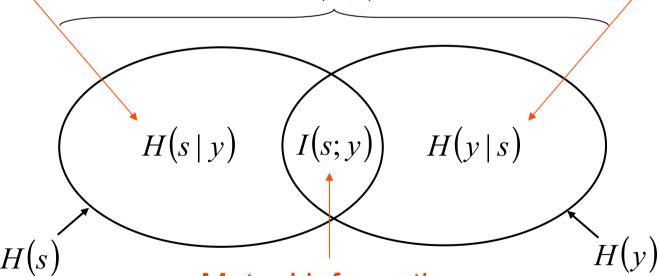

Binary probability

■ Entropy of transmit signal

$$H(s) = E[I(s)] = \int P(s)I(s)ds$$
$$= -\int P(s)\log_2 P(s)ds$$

Gaussian probability

Mutual Information


$$y(t) = \frac{\widetilde{y}(t)}{h} = s(t) + \frac{\widetilde{n}(t)}{h} = s(t) + n(t)$$

$$I(s; y) = H(y) - H(y \mid s)$$

Entropy of transmit signal when observing receive signal

H(s,y)

Entropy of receive signal when observing transmit signal

Entropy of transmit signal

Mutual information

Entropy of receive signal

Entropy of Noise

Conversion of conditional entropy

$$H(y \mid s) = H(s + n \mid s) = H(n)$$

■ Entropy of Gaussian noise

$$P(n) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{n^2}{2\sigma^2}}$$

$$H(n) = -\int P(n)\log_2 P(n) dn = \frac{1}{2}\log_2 2\pi e\sigma^2 = \frac{1}{2}\log_2 2\pi e\frac{P_n}{h^2}$$

Channel Capacity (Real)

Channel capacity

$$C_{R} = \frac{1}{T} \max_{E[s^{2}] \le P_{t}} I(s; y) = \frac{1}{T} \max_{E[s^{2}] \le P_{t}} H(s + n) - H(n)$$

Time period needed to transmit a symbol

Maximization of mutual entropy

Fano's inequality

$$H(s+n) \le \frac{1}{2} \log_2 2\pi e(P_t + \frac{P_n}{h^2}) = \frac{1}{2} \log_2 2\pi e(P_t + \frac{P_n}{G_h})$$

$$C_{\rm R} = \frac{1}{T} \left(\frac{1}{2} \log_2 2\pi e (P_{\rm t} + \frac{P_{\rm n}}{G_{\rm h}}) - \frac{1}{2} \log_2 2\pi e \frac{P_{\rm n}}{G_{\rm h}} \right) = \frac{1}{2T} \log_2 \left(1 + \frac{G_{\rm h} P_{\rm t}}{P_{\rm n}} \right)$$

Signal-to-Noise Ratio (SNR)