2017 2Q

Wireless Communication Engineering

\#10 Adaptive Modulation Coding

Kei Sakaguchi sakaguchi@mobile.ee.
July 13, 2017

Course Schedule (2)

	Date	Text	Contents
$\# 9$	July 10	4.6	Error correction coding
$\# 10$	July 13		Adaptive modulation coding
	July 17		No class
$\# 11$	July 20	4.3	Inter symbol interference and adaptive equalizer
$\# 12$	July 24	$3.6,4.5$	Spread spectrum and code division multiple access (CDMA)
\#13	July 27	3.5	Orthogonal frequency division multiplexing (OFDM)
$\# 14$	July 31		Collaborative exercise for better understanding 2
$\# 15$	TBD	All	Final examination

From Previous Lecture

■ Convolutional coding \& Viterbi decoding

■ Error rate of Viterbi decoding

$$
p_{\mathrm{e}}<\sum_{d=d_{\min }}^{\infty} 2^{d-d_{\min }} p_{2}(d) \quad p_{2}(d)=\sum_{k=d_{\mathrm{c}}+1}^{d}\binom{d}{k} p_{\mathrm{e}}^{k}\left(1-p_{\mathrm{e}}\right)^{d-k}
$$

■ Interleaver \& time diversity
Avoiding burst error $\quad p_{\mathrm{e}}\left(\gamma_{\text {bad }}\right)^{k} \longrightarrow p_{\mathrm{e}}\left(\gamma_{1}\right) \cdot p_{\mathrm{e}}\left(\gamma_{2}\right) \cdots p_{\mathrm{e}}\left(\gamma_{k}\right)$

Contents

- Throughput of higher order modulation
- Throughput in fading channel
- Adaptive modulation
- Adaptive modulation coding

QAM Modulation

$\log _{2} M=1$

$$
\log _{2} M=4
$$

$\log _{2} M=2$

$\log _{2} M=6$

BER of Higher Order Modulation

BPSK modulation
$p_{\mathrm{eb}}(\gamma)=\frac{1}{2} \operatorname{erfc}(\sqrt{\gamma}) \quad \gamma=\frac{P|h|^{2}}{\sigma^{2}}$

QAM modulation

$$
\begin{aligned}
p_{\mathrm{eb}}(\gamma)= & \frac{2}{\log _{2} M}\left(1-\frac{1}{\sqrt{M}}\right) \\
& \cdot \operatorname{erfc}\left(\sqrt{\frac{3 \gamma}{2(M-1)}}\right)
\end{aligned}
$$

BER of QAM modulation

Throughput of Higher Order Modulation

Frame structure

Packet Error Rate (PER)

$$
p_{\mathrm{ep}}(\gamma)=1-\left(1-p_{\mathrm{eb}}(\gamma)\right)^{L}
$$

Throughput

Throughput of QAM modulation

BER in Fading Channel

BER of BPSK modulation

$$
p_{\mathrm{eb}}(\gamma)=\frac{1}{2} \operatorname{erfc}(\sqrt{\gamma}) \quad \gamma=\frac{P|h|^{2}}{\sigma^{2}}
$$

Rayleigh fading channel

PDF of Rayleigh fading channel

$$
f(\gamma)=\frac{1}{\bar{\gamma}} \exp \left(-\frac{\gamma}{\bar{\gamma}}\right) \quad \bar{\gamma}=\mathrm{E}\left[\frac{P|h(t)|^{2}}{\sigma^{2}}\right]
$$

Average BER

$$
\bar{p}_{\mathrm{eb}}(\bar{\gamma})=\int p_{\mathrm{eb}}(\gamma) f(\gamma) \mathrm{d} \gamma=\frac{1}{2}\left(1-\sqrt{\frac{\bar{\gamma}}{1+\bar{\gamma}}}\right)
$$

BER in Fading Channel

Throughput in Fading Channel

Throughput performance

Structure of Rate Adaptation

Adaptive control
Maximization of transmit data rate by adaptive control of modulation order of QAM and coding rate of channel coder in accordance with the channel variation (by using feedback channel)

Channel quality estimation
One of receiver function to estimate optimal transmit rate (modulation order, coding rate) based on instantaneous SNR estimated using training sequence and to tell transmitter about their optimal values via feedback channel

Adaptive Modulation

SNR estimation

$$
\gamma(t)=\frac{P|\hat{h}(t)|^{2}}{\sigma^{2}}
$$

Throughput estimation

$$
T P(\gamma, M)=\log _{2} M\left(1-p_{\mathrm{eb}}(\gamma)\right)^{L}
$$

BPSK $\quad p_{\mathrm{eb}}(\gamma)=\frac{1}{2} \operatorname{erfc}(\sqrt{\gamma})$
QAM $\quad p_{\mathrm{eb}}(\gamma)=\frac{2}{\log _{2} M}\left(1-\frac{1}{\sqrt{M}}\right)$

$$
\operatorname{erfc}\left(\sqrt{\frac{3 \gamma}{2(M-1)}}\right)
$$

Table for adaptive modulation
SISO throuput in AWGN

Adaptive modulation Optimal modulation order

$$
\hat{M}=\arg \max _{M} T P(\gamma, M)
$$

Throughput of Adaptive Modulation

Average throughput

$$
\bar{T} \bar{P}(\bar{\gamma}, M)=\int f(\gamma) T P(\gamma, M) \mathrm{d} \gamma
$$

PDF of Rayleigh fading

$$
f(\gamma)=\frac{1}{\bar{\gamma}} \exp \left(-\frac{\gamma}{\bar{\gamma}}\right) \quad \bar{\gamma}=\mathrm{E}\left[\frac{P|h(t)|^{2}}{\sigma^{2}}\right]
$$

Average throughput of adaptive modulation

Table of adaptive modulation

SNR threshold

$$
\begin{aligned}
\overline{T P}(\bar{\gamma})= & \int_{0}^{\gamma_{1}} f(\gamma) T P(\gamma, 2) \mathrm{d} \gamma+\cdots \\
& +\int_{\gamma_{3}}^{\infty} f(\gamma) T P(\gamma, 64) \mathrm{d} \gamma \\
\gamma_{1}=10^{9.5 / 10} \quad & \gamma_{2}=10^{16 / 10} \quad \gamma_{3}=10^{22.5 / 10}
\end{aligned}
$$

Inst. SNR	Modulation
-9.5 dB	BSPK
$9.5 \mathrm{~dB}-16 \mathrm{~dB}$	QPSK
$16 \mathrm{~dB}-22.5 \mathrm{~dB}$	16 QAM
22.5 dB	64 QAM

Adaptive Modulation in Fading Channel

Fixed modulations \& Adaptive modulation

Convolutional Coding \& Puncture

Convolutional coding (constraint length 7) Input data

0	1	2	3	4	5	6	7	8	9

Encoded data with puncture 2/3 3/4

A | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

B | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Puncture matrix

$\mathrm{R}=1 / 2$		$\mathrm{R}=2 / 3$		$\mathrm{R}=3 / 4$		$\mathrm{R}=4 / 5$		$\mathrm{R}=5 / 6$	
P	$\mathrm{d}_{\text {free }}$	P							
1	10	$\mathrm{~d}_{\text {free }}$							
1	10	11	6	110	5	1111	4	11010	4

BER of Convolutional Coding

Throughput of Convolutional Coding

Throughput performance in AWGN channel

Adaptive Modulation Coding in Fading Channel

Performance in Rayleigh fading channel

Summary

■ Throughput against modulation order

$$
T P(\gamma, M)=\log _{2} M\left(1-p_{\mathrm{eb}}(\gamma)\right)^{L}
$$

■ Adaptive modulation

$$
\hat{M}=\arg \max _{M} T P(\gamma, M)
$$

SNR Table for AMC

■ Throughput performance of AMC

$$
\overline{T P}(\bar{\gamma})=\int_{0}^{\gamma_{1}} f(\gamma) T P(\gamma, 2) \mathrm{d} \gamma+\cdots+\int_{\gamma_{3}}^{\infty} f(\gamma) T P(\gamma, 64) \mathrm{d} \gamma
$$

