数理経済学特講

複数財オークションのアルゴリズムと 離散最適化

第9回 均衡を近似的に計算するアルゴリズム

塩浦昭義 東京工業大学 経営工学系 准教授 shioura.a.aa@m.titech.ac.jp

評価値が既知の場合のアルゴリズム

定理: 財の均衡配分 ←→ 評価値に関する最大重みマッチング

∴評価値が既知 →均衡配分の計算は、最大重みマッチング問題に帰着可能

均衡配分が得られた → 均衡価格の計算は、最短路問題に帰着可能

評価値が分からない場合は?

評価値の扱いについて

入札者の評価値は個人情報

→ オークション主催者に 直接 知らせたくない

代案: 評価値の情報を 間接的に 伝える

(例: 所与の価格に関して, 利得最大の財)

- 1. 主催者: 各財の暫定価格を決定
- 2. 各入札者: 暫定価格の下で利得最大の財を報告
- 3. 入札者全員に(重複無く)最も欲しい財を
 - 配分可能 → 終了. 現在の価格は均衡価格
 - 配分不可能 > 主催者は暫定価格を適切に変更

反復オークション と呼ばれる

単一財の場合 → イングリッシュ・オークション など

反復オークションのアルゴリズム

以下の2つを紹介

- ・その1:均衡を近似的に計算
 - 単調に価格を増加, 均衡配分

(および(極小)均衡価格の近似値)を求める

- 各反復で、入札者の利得最大の財ひとつの情報が必要
- ・価格増加のルールは簡単: 希望が重複→価格を増やす
- ・その2:均衡を厳密に計算
 - ・ 単調に価格を増加, (極小)均衡価格

(および均衡配分)を求める

- 各反復で、入札者の利得最大の財すべての情報が必要
- ・価格増加のルールは複雑:
 - ・得た情報を使い、価格を増やす財をうまく選ぶ。

均衡を近似的に計算するアルゴリズム

アルゴリズムの流れ

- 各入札者は、現在の価格の下で利得最大の財を一つ選ぶ
- 同じ財を複数の入札者が選ぶ
 - → ひとりに割り当て、 その財の価格を上昇させる.

異なる分野で独立に提案される

- Bertsekas (1979) --- 数理計画, オペレーションズ・リサーチ
 - 最大重みマッチング問題のアルゴリズムとして提案
 - この分野では「オークションアルゴリズム」とよばれる
- Demange, Gale, Sotomayor (1986)
 - --- 数理経済, オークション理論
 - ワルラス均衡(の近似解)を求めるアルゴリズムとして提案
 - Crawford, Knoer (1981) の特殊ケース(らしい)

均衡を近似的に計算するアルゴリズム:詳細

δ: アルゴリズムのパラメータ, > 0

ステップO:全ての財の価格 p(j) を 0 にする.

各入札者は割り当てられた財なし.

 $\max_{j} \{v(i,j)-p(j)\}$

ステップ1: 各入札者 i に対し,

財の割当あり or 最大利得≦0 → 終了

ステップ2:財の割当なし,かつ 最大利得 > 0 なる 入札者 i を選ぶ.

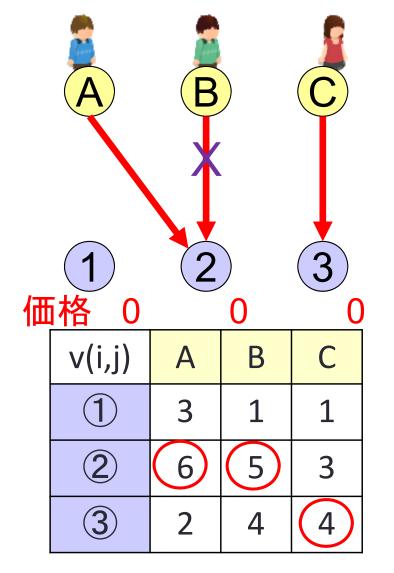
ステップ3: v(i,j)-p(j) 最大の j を選び, i に j を割り当て.

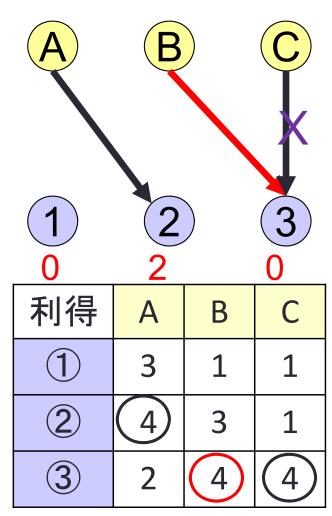
入札者 k が既に財jに割り当てられていた

→ k への j の割り当てを取消. p(j):=p(j) + δ

ステップ1へ.

δ=2のとき





A	В		C
0	2) 2	3
利得	Α	В	С
1	3	1	1
2	4	3	1
3	0	2	2

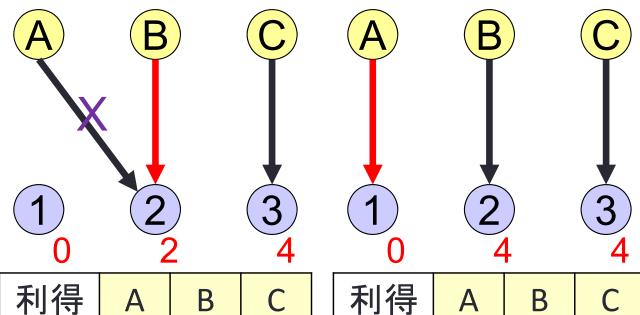
δ=2のとき

3

-2

0

3

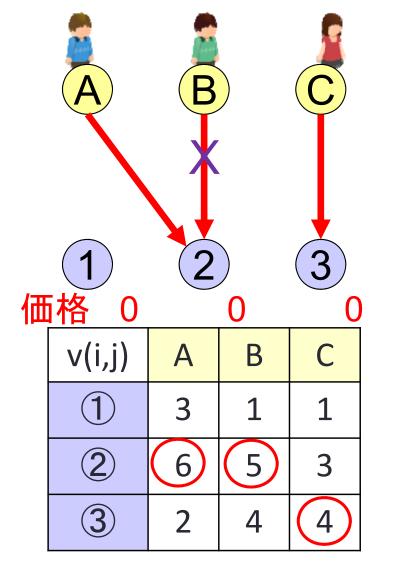


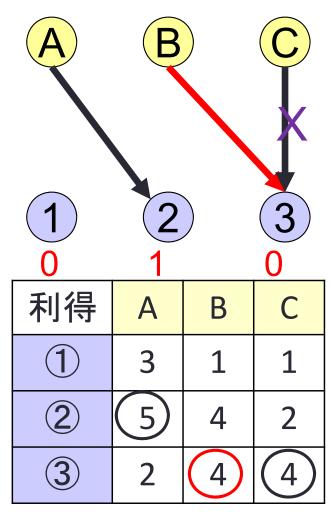
終了 均衡配分〇 均衡価格〇

参考: 極小均衡価格 0 3 2

利得	A	В	С
1	(m)	1	1
2	2	1	-1
3	-2	0	0

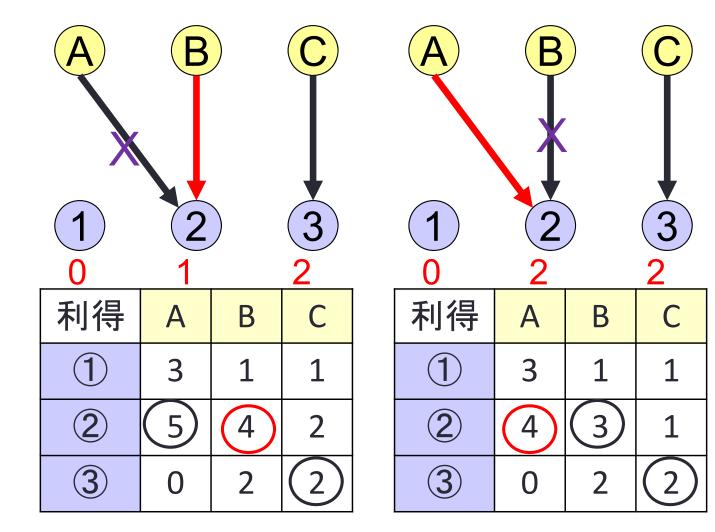
δ=1のとき





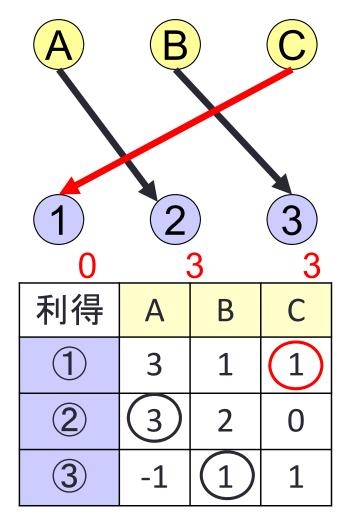
A	B		C
0	2		3
利得	А	В	С
1	3	1	1
2	5	4	2
3	1	3	3

δ=1のとき

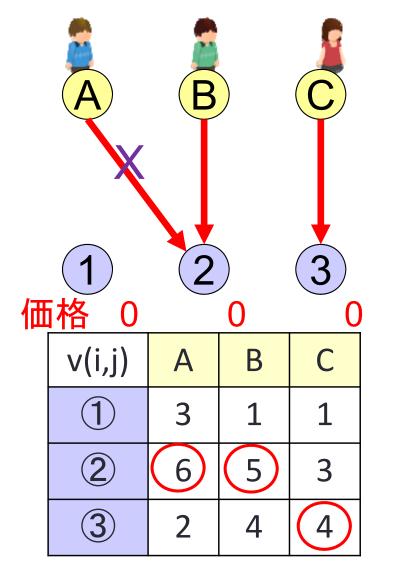


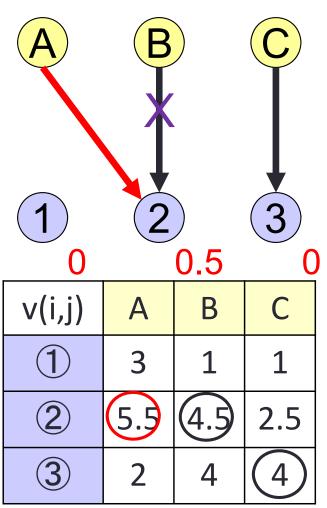
A	В		C
1	2	3	3
利得	А	В	С
1	3	1	1
2	(M)	2	0
3	0	2	2

δ=1のとき

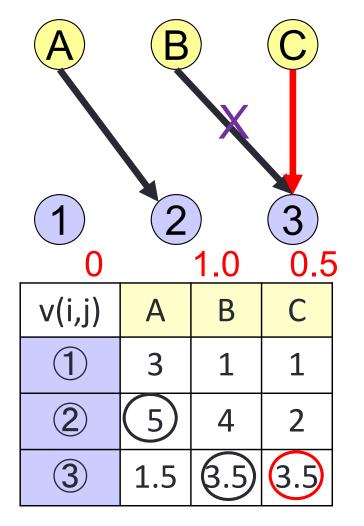


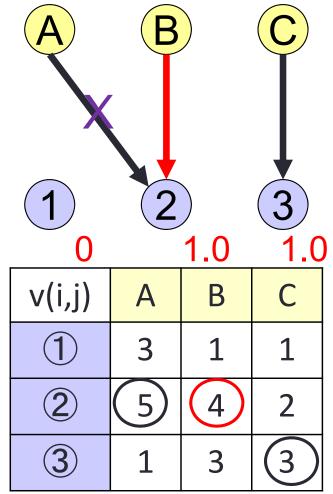
終了 均衡配分× 均衡価格〇



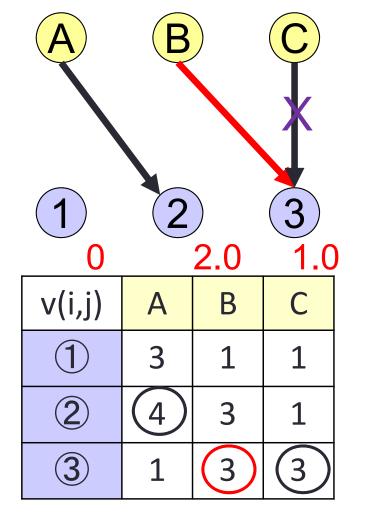


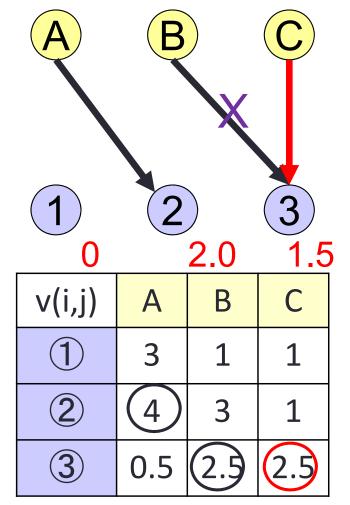
1	2	1.0	3
v(i,j)	А	В	С
1	3	1	1
2	5	4	2
3	2	4	4

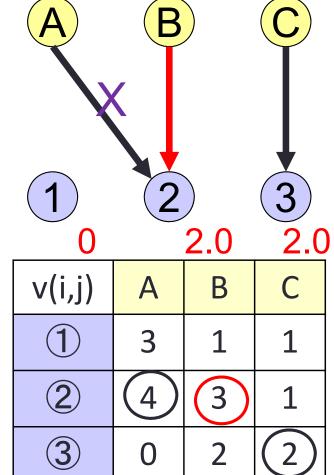


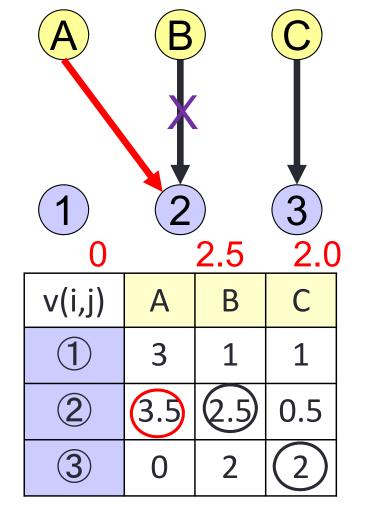


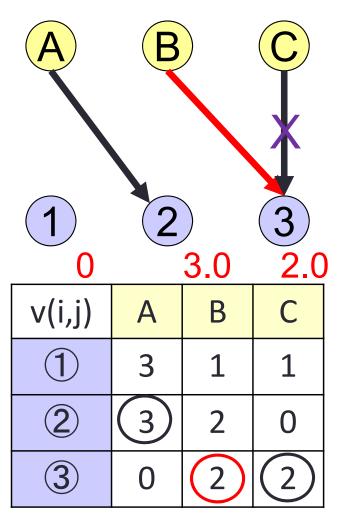
A 1	B X 2		3
0		1.5	1.0
v(i,j)	Α	В	С
1	3	1	1
2	4.5	(5) (3)	1.5
3	1	3	3

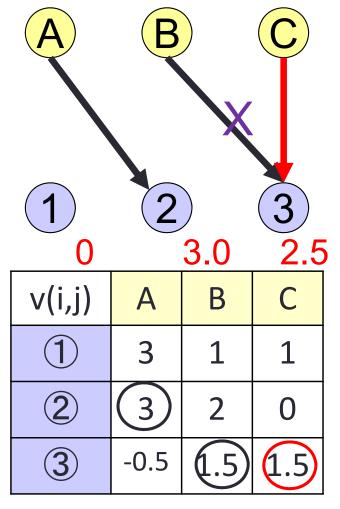




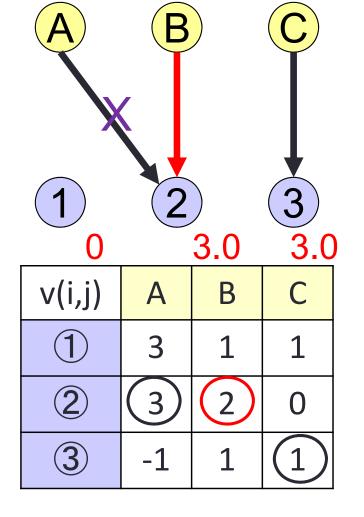


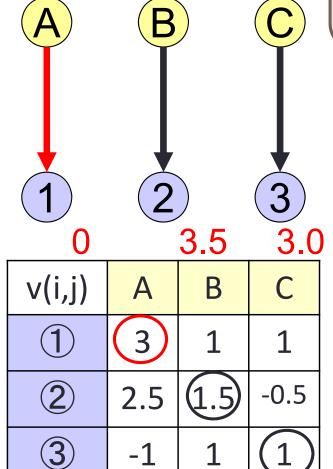






δ=0.5のとき





終了 均衡配分〇 均衡価格〇

アルゴリズムの性能評価

定理1アルゴリズムは有限回の反復後に終了する

得られたマッチングの重み = 最大重み

定理2 アルゴリズムにより得られたマッチング M に対し, Mの重み \geq 最大重みマッチングの重み $-\delta$ min{|B|, |N|}

得られた財の価格 = 均衡価格

定理3 アルゴリズムにより得られた財の価格 p(j), 最小均衡価格 p*(j)

 \rightarrow $|p(j) - p^*(j)| \leq \delta \min\{|B|, |N|\}$

厳密な均衡を得る

評価値 v(i,j) がすべて整数

→ δ を調整して、均衡配分、均衡価格の厳密値を得ることが可能

定理2 アルゴリズムにより得られたマッチング M に対し, Mの重み \geq 最大重みマッチングの重み $-\delta$ min{|B|, |N|}

- δ <1/min{|B|, |N|} とする
- → Mの重み > 最大重みマッチングの重み -1
- → マッチングの重みは整数なので、Mの重み = 最大重み

定理3 アルゴリズムにより得られた財の価格 p(j), 最小均衡価格 p*(j) → |p(j) – p*(j) | ≦ δ min{|B|, |N|}

- δ <1/2 min{|B|, |N|} とする
- \rightarrow |p(j) p*(j) | < 0.5
- → p*(j) は整数なので、p(j) を最も近い整数に丸め = p*(j)

定理1の証明

定理1アルゴリズムは有限回の反復後に終了する

[証明]

- 各財の価格: 初期値=O
- アルゴリズムの各反復:
 ある財jの価格 p(j) が δ 増加 (→ v(i,j)-p(j) が δ 減少)
- すべての入札者 i に対し v(i,j)-p(j) < 0
 - → 財jの価格は今後変化しない
- ∴財 j の価格 p(j) の増加回数≦ v(i,j) / δ

定理2の証明:準備

定義: 入札者 i は δ-happy ←→条件 (a) or (b) を満たす

(a) [利得が「ほぼ」最大の財が割当]

iに財jが割り当てられていて,

かつ
$$v(i,j) - p(j) \ge \max_{0 \le h \le n} \{v(i,h) - p(h)\} - \delta$$

(b) [最大利得が非正]

iに財の割当なし、かつ $\max_{0 \le h \le n} \{v(i,h) - p(h)\} \le 0$

命題:

- (i) 均衡 → すべての入札者は 0-happy
- (: 定義からすぐにわかる)
- (ii) ステップ3で入札者 i に財 j が割り当て
- → i は δ-happy (財 j が他の入札者に奪われるまで)
- (二財 j を選んだ時点では、最大利得 \rightarrow 直後に価格が δ 減少. 他の入札者に奪われるまでは価格 p(j) 不変)
- (iii) アルゴリズム終了時には、全員が δ-happy
- (: 財の割り当て有り→(ii) より(a) 成立, 無し→(b)成立)

定理2の証明

定理2 アルゴリズムにより得られたマッチング M に対し, Mの重み \geq 最大重みマッチングの重み $-\delta$ min{|B|, |N|}

[証明]

アルゴリズム終了時、全ての入札者は
$$\delta$$
-happy (ご命題(iii)) $\alpha(i)$ =アルゴリズム終了時の入札者 i への割り当て $\alpha^*(i)$ =最大重みマッチングでの入札者 i への割り当て $\Rightarrow \alpha(i) \neq 0$ ならば $v(i,\alpha(i)) - p(\alpha(i)) \geq \max_{0 \leq h \leq n} \{v(i,h) - p(h)\} - \delta$ $\geq v(i,\alpha^*(i)) - p(\alpha^*(i)) - \delta$ $\alpha(i) = 0$ ならば $v(i,\alpha(i)) - p(\alpha(i)) = 0 \geq \max_{0 \leq h \leq n} \{v(i,h) - p(h)\}$ $\geq v(i,\alpha^*(i)) - p(\alpha^*(i))$

定理2の証明

よって
$$\sum_{i \in B} [v(i, \alpha(i)) - p(\alpha(i))]$$

$$\geq \sum_{i \in B} [v(i, \alpha^*(i)) - p(\alpha^*(i))] - \min\{|B|, |N|\} \delta$$
 ① アルゴリズムの途中で価格 >0 の財 → 終了時まで常に誰かに割り当てられる
∴アルゴリズム終了時に割り当てなしの財 j: p(j)=0
∴左辺= $\sum_{i \in B} v(i, \alpha(i)) - \sum_{i \in B} p(\alpha(i))$

$$= \sum_{i \in B} v(i, \alpha(i)) - \sum_{j \in N} p(j)$$
 ② 右辺第1項= $\sum_{i \in B} v(i, \alpha^*(i)) - \sum_{i \in B} p(\alpha^*(i))$

$$\geq \sum_{i \in B} v(i, \alpha^*(i)) - \sum_{j \in N} p(j)$$
 ③

定理2の証明

1, 2, 3より

$$\sum_{i \in B} v(i, \alpha(i)) \ge \sum_{i \in B} v(i, \alpha(i^*)) - \min\{|B|, |N|\} \delta$$

アルゴリズムの 求めたマッチング の重み

最大重み マッチングの重み

証明終わり

演習問題

下記のように評価値が与えられたとき, δ=1として, 均衡を近似的に計算するアルゴリズムを適用して 均衡の近似解を計算せよ. 計算の過程も書くこと.

問1

v(i,j)	Α	В	С
1	2	3	6
2	6	7	7

問2

v(i,j)	Α	В	С
1	3	1	0
2	7	6	7
3	1	7	8

問3

v(i,j)	A	В	C
1	3	1	0
2	7	6	7
3	1	7	8
4	0	0	4

それぞれの極小均衡価格は以下の通り

問1:p(1)=2, p(2)=6

問2:p(1)=0, p(2)=4, p(3)=5

問3:p(1)=0, p(2) =3, p(3)=4, p(4)=0