Perfect Bayesian Equilibrium and Sequential Equilibrium (July 20, July 24)

I. Backwards Induction and Subgame Perfect Equilibrium

e The backwards induction algorithm for games of perfect information — started at

penultimate node

e For imperfect information games, this method was not possible because of the

following cases:

— The penultimate node may be in an information set that contained another

node.

— Even if the penultimate node were the only node contained in its information
set, there would be a node in an information set that also contained a different

node.

e In those cases, when reaching such a node in the induction method, backwards
induction could not be applied. Those nodes were ignored in the generalized back-

wards induction. (This point will be explained using an example in Section II.)

e Today: introduce two equilibrium notions — (weak) perfect Bayesian equilib-
rium and sequential equilibrium that can be found using a backward induction

method that can be applied to such nodes.

o If time allows: trembling-hand perfect equilibrium, a further refinement of

sequential equilibrium
II. Motivating Example

e Consider the game below (Game 1).




e The game above in matrix form is given by the following.

1\2] ¢ d
a 4,4 10,3
b 1,3 12,2

e Two things to note:

— Strategy d of player 2 is strictly dominated by strategy c. Therefore, when

asked to move, player 2 will not choose d.

— The unique Nash equilibrium is (a,c). Because there is no proper subgame of

this game, (a,c) is also the unique subgame-perfect equilibrium.

e Now, modify the game so that player 1 has an "out” strategy (denoted by O) that
immediately ends the game. The game tree and matrix are given below (Game
1%).
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1\2] ¢ d
4,4 10,3
b | 1,322
O |3,2]3,2

e There are now two Nash equilibria, both of which are subgame-perfect: (a,c) and

(0,d).

e However, player 2 when given the chance to move would not want to choose d since
this yields a lower payoff than choosing ¢, regardless of whether player 1 had

chosen a or b. Moreover, subgame-perfect equilibrium does not rule this out.



e Need a concept similar to backwards induction — (weak) perfect Bayesian equilib-

rium
III. System of Beliefs and Sequential Rationality

e In the previous example, start with player 2’s information set. Player 2, when asked
to move, does not whether he/she is at 2! or 22 and makes a prediction, or belief,
as to which one by associating a probability for each event. That is, a player’s belief
(on an information set) is a probability distribution over the decision nodes in the

information set.

Formally, let H be an information set belonging to player ¢. A probability dis-
tribution over H is given by a function u, where for each z € H, u(x) denotes
the probability that player ¢ believes he/she is at decision node z. Because these

numbers represent probabilities, p(xz) > 0 for all x € H and ) pu(z) = 1.

Now, consider a collection of such u for each information set H. Such a collection
is called a system of beliefs. That is, a function p is said to be a system of beliefs
if for each H € Z,

u(x) >0 Ve € H, Z,u(x)zl.
zeH

Based on his/her own beliefs, each player chooses the action that maximizes ex-

pected payoffs — sequential rationality (to be formally defined below).

In Game 1, let pu(x!) = 1/3 and p(z?) = 2/3.
— If player 2 chooses ¢, player 2’s expected payoff is given by (1/3)x4+(2/3)x3 =
10/3.

— If player 2 chooses d, player 2’s expected payoff is given by (1/3)x3+(2/3)x2 =
7/3.

— Since 10/3 > 7/3, player 2 choosing ¢ gives a higher expected payoff.
e Some notation before introducing the formal definition:

— FEu;i(o;,0_i|z): expected payoff of the behavioral strategy profile o = (0;,0_;)
starting from node x. This value represents the payoff of i as if the game
started at node = (regardless of whether previous play prescribed by o led to

x or not, just as in considering subgames for subgame-perfect equilibrium).



— Eui(o;,0_i|p, H): Given beliefs pu, the expected payoff of o starting from
information set H — in the above concept, player i does not know for sure
he/she is at node = but does know that he/she is at information set H which
contains x. These values were also calculated in Game 1 above.

— Although the notation Eu;(0;,0_;|x) and Eu;(0;, 0_;|, H) may seem to in-

dicate conditional expectation, but they have no such meaning.

— With abuse of notation, let A(S;) denote the set of behavioral strategies.

Definition. Let u be a system of beliefs. A behavioral strategy profile o* is se-

quentially rational with respect to p if for each information set H,
Eui(U;k, O’ii’,u, H) > Eui(ai, U*_Z-‘,u,, H) Vo; € A(SZ)

where 7 is the player who moves at all decision nodes in H. Equivalently, the above

inequality can be rewritten by the following:

> @) Eui(of, 0% |x) = Y p(x)Bui(oi, 0 |x) Voi € A(S;)
rzeH zeH

e In Game 1, the strategy profile (a,c) is sequentially rational with respect to belief
p(xt) =1/3 and p(2?) = 2/3.

IV. Consistency of Beliefs and Perfect Bayesian Equilibrium

e Consider once again Game 1. (a,c) is sequentially rational with respect to belief
p(xl) =1/3 and pu(x?) = 2/3, but given this strategy profile (a, ¢), is it reasonable
for player 2 have a belief stated by u? That is, should player 2 believe that player

1 would choose a with probability 1/37 — consistency condition for beliefs.

e In the previous section, beliefs . were given with no justification to how they were

set. Now, we consider the relationship between the strategies and the beliefs.

e The beliefs must be consistent to the actions that precede the information set. That
is, the beliefs must match the probabilities induced by the actions specified by the

strategies.

e Review of conditional probability.



Let A and B be events. Then, the conditional probability of A given B — denoted
by P(A|B) — is given by the following equation.

P(ANB)

P(AIB) = =55

(It is assumed that P(B) > 0.)

e Given a strategy profile ¢* and an information set H and a decision node x € H,
the two events to look at:
— A: the event that z is reached

— B: the event that the information set H such that = € H is reached — that is,

the event that at least one decision node in H is reached.

— From how A and B are defined, note that AN B = A.
e Some notation: Let a strategy profile o be given.

— P7(x): probability that node z is reached under the strategy profile o.

— PY?(H): probability that information set H is reached under the strategy pro-
file 0.

Also, note that P?(H) =3 .y P?(x).

— Example of calculation of these probabilities in class.

e Therefore, the probability that a decision node x € H is reached from strategy

profile o, conditional on the event that H is reached, is given by

Pi(x) _ P(a)
P(H) ~ Spey Po()

A system of beliefs y is said to be consistent with the strategy profile o if the

following equality is satisfied
P (x) B ( )
o) MY

for all information sets H with P?(H) > 0. The above equation is called Bayes’ rule.
In words, p and o must satisfy Bayes’ rule whenever applicable (that is, whenever
P?(H) > 0).




e Putting the two ideas together, we have a formal definition of a perfect Bayesian
equilibrium.

Let o* be a strategy profile and p a system of beliefs. (0*, 1) is a perfect Bayesian
equilibrium if the following hold:

e 0" is sequentially rational with respect to

e [ is consistent with o*

V. Some Observations

e In Game 1, ((a,c),p) is the unique perfect Bayesian equilibrium where u(z!) = 1
and p(x?) = 0.

e In Game 1’, ((a,c), ) is the unique perfect Bayesian equilibrium where p(x!) =1
and p(r?) = 0.

e Consider the following example (Game 2).
31,

0707

e The game in matrix form is given below, where player 1 chooses rows, player 2

chooses columns, and player 3 chooses matrices.

Matrix e c d Matrix f c d
a 1,1,11,1,1 a 1,1,1 1,11
b 3,1,310,3,0 b 0,0,0 | 2,2,2

e There are three Nash equilibria: (a,d,e), (a,c, f), (b,d, f).



e Only (b,d, f) is a subgame-perfect equilibria. To see this, the subgame starting

from player 2’s decision node can be expressed in the following matrix form.

2\3 e f
¢ 13,1,3]0,00
d |0,3,0]222

e There is only one Nash equilibrium: (d, f). Therefore, (a,d,e) and (a,c, f) are not

subgame-perfect equilibria.

e However, (a,d, e) combined with the belief u(2') = 1 is a perfect Bayesian equilib-

rium. The first equilibrium is shown below.

3,1, 3

0,0, 0

0,3, 0

2,29

Explanation: Under belief u, player 3’s optimal action is to choose e. Then, when
given player 3’s action e, player 2’s optimal action is d, which yields 3, over ¢, which
yields 1. Given d and e, player 1’s optimal action is to choose a. Thus, (a,d,e) is
sequentially rational with respect to p. p is consistent with (a, d, e) since player 3’s
information set is not reached under this strategy profile, and Bayes’ rule cannot

be applied.
VI. Stronger Consistency Requirement and Sequential Equilibrium

e It was shown in the previous example that a weak perfect Bayesian equilibrium

may not be a subgame-perfect equilibrium.

e In a perfect Bayesian equilibrium, beliefs can be arbitrary at information sets that
are not reached. This results from the phrase ”apply Bayes’ rule whenever appli-

cable.”



e To avoid such unreasonable beliefs for information sets that are not reached in
equilibrium, consider the additional requirement that the strategy profiles and be-
liefs are obtained from convergence of a sequence of completely mixed behavioral
strategies and a sequence of system of beliefs that are consistent to these behavioral

strategies.

e The convergence of a sequence = robustness of beliefs to small changes in the
strategy profiles. (Equilibria defined on principles of “robustness” are typically
defined in this way.)

e Formal definition is given below.

Definition. Let o* be a strategy profile and p a system of beliefs. (o*,u) is a

sequential equilibrium if there exists a sequence of strategies (¢%)2° , such that for
k

all k, o¥(a) > 0 for every action a available to player i (oF is said to be a completely

mixed behavioral strategy) and a sequence of systems of beliefs (;i* )72, such that

o o = o* and p* — p,
e ¥ is consistent with o* for each k,

e o™ is sequentially rational with respect to pu — that is, for each information set
H,
Eui(af, U*,i‘,uz, H) > Eui(ai, Uii|u, H) Vo, € A(SZ)

where i is the player who moves at all decision nodes in H.

e It is known that the strategy profile in every sequential equilibrium is a subgame-

perfect equilibrium.

e Thus, in Game 2, the strategy combination of (a, d, ) cannot be part of a sequential

equilibrium.
VII. Trembling-hand Perfect Equilibrium

e There is a further refinement of sequential equilibrium called trembling-hand perfect
equilibrium (Selten (1975)).



Definition. Let o* be a strategy profile and p a system of beliefs. (o*,u) is a

trembling-hand perfect equilibrium if there exists a sequence of completely

mixed behavioral strategies (0%)2°, and a sequence of systems of beliefs (u*)2°,

such that
o oF = o* and p¥ — 4,
e ¥ is consistent with o* for each k,
e For each k£ = 1,2, --- the following property holds: for each information set H,
Eui(o}, 0" |u* H) > FBui(os, 0" ,|u*, H) Yo; € A(S))

where ¢ is the player who moves at all decision nodes in H.

e Main difference: third condition has to hold for all k = 1,2,--- for trembling-hand

perfect, while this condition need to be held only at limit for sequential.

e Example below (Game 3):

e ((0,¢),p) wth pu(z') > 1/2 is a sequential equilibrium but not a trembling-hand

perfect equilibrium.

e Reason: completely mixed — positive probability that player 2 plays d (“small
error”), but in that case, O is not a best response to player 2’s completely mixed

behavioral strategy and violates the third condition.



VIII. Further Topics and Notes on the Literature
e Mas-Colell, Whinston, and Green (1995) Section 9.C
e The original paper on sequential equilibrium: Kreps and Wilson (1982)

e Relationship between perfect Bayesian and sequential equilibrium and an equilib-

rium concept between them (Fudenberg and Tirole (1991))
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