1. Consider the following game with two players: player 1 and player 2. Player 1 moves first and has three choices: a, b, c. If player 1 chooses a, the game ends, and player 1 receives a payoff of 2 , while player 2 receives a payoff of 2 . If player 1 chooses b or c, it is then player 2 's turn to move. Player 2 knows whether player 1 has chosen b or c and two choices b^{\prime} and c^{\prime}.

- If player 1 chooses b and player 2 chooses b^{\prime}, then player 1 and player 2 each receive 3 and 3 respectively.
- If player 1 chooses b and player 2 chooses c^{\prime}, then player 1 and player 2 each receive 0 and 1 respectively.
- If player 1 chooses c and player 2 chooses b^{\prime}, then player 1 and player 2 each receive 1 and 4 respectively.
- If player 1 chooses c and player 2 chooses c^{\prime}, then player 1 and player 2 each receive 1 and 0 respectively.
(a) Draw the game tree associated with this game.
(b) Define the strategic form game associated with this game and find all Nash equilibria.
(c) Find all subgame-perfect equilibria of this game.

2. Consider the strategic form game below and consider only pure strategies:

$1 \backslash 2$	X	Y
X	4,2	0,0
Y	0,0	2,4

(a) Find all Nash equilibria of the above game.

Before the game above is played, let player 1 have the option of whether to "burn" (B) or to "not burn" $(N B)$. By choosing B, player 1 's payoff is reduced by 1 , while by choosing $N B$ player 1's payoff is unchanged. Suppose that player 2 can observe whether player 1 has chosen B or $N B$.
(b) Draw the game tree associated with this modified game.
(c) Find all subgame-perfect equilibria.
3. Consider the infinitely repeated version of the prisoner's dilemma, whose component game is given by the following matrix.

$1 \backslash 2$	C	D
C	6,6	0,8
D	8,0	2,2

Suppose for simplicity that $\delta_{1}=\delta_{2}=\delta$. Consider the following modified trigger strategy of player i :

- Choose C in the first repetition.
- Choose D in the t-th repetition with $t \geq t^{*}+1$, where t^{*} is the first time that player $j \neq i$ has chosen D. Otherwise, choose C.

The modified trigger strategy is the same as the trigger strategy, except player i chooses D in the modified trigger only when player $j \neq i$ has chosen $D .{ }^{1}$
(a) Give a formal description of the modified trigger strategy.
(b) Find a $\bar{\delta}$ with $0<\bar{\delta}<1$ such that for all $\delta \geq \bar{\delta}$, both players choosing the modified trigger is a Nash equilibrium of the infinitely repeated game.
(c) Is there a δ with $0<\delta<1$ such that both players choosing the modified trigger is a subgame-perfect equilibrium of the infinitely repeated game? If so, find one and prove that it is a subgame-perfect equilibrium. If not, prove that there is no such δ.

[^0]
[^0]: ${ }^{1}$ Some texts call this strategy the "(grim) trigger" strategy.

