
Monotone Comparative Statics and Supermodular Games (June 29, July 3)

I. Comparative Statics

• Examples – important when making policy decisions

– What happens to demand as income rises?

– How does a firm’s output level respond to an increase in the output price?

• Relationship between [optimal solution] and [parameters] → comparative statics

• Monotone comparative statics: when the optimal solution either monotonically in-

creases or decreases as the parameters increase.

II. Objectives and Goals

• Consider the following problem

max
x∈X

f(x, θ)

where x is the decision variable, X is the feasible set, and θ is a parameter taken

from a set Θ.

• x∗(θ): the solution to the maximization problem for a given θ

• Question: Under what conditions on f is x∗(θ) a nondecreasing function of θ?

• Use this theory to derive a new class of games in which a Nash equilibrium exists

and the equilibria can be ordered.

III. Scalar Case (When X ⊂ R and Θ ⊂ R)

• Consider once again the objective:

max
x∈X

f(x, θ)

for each θ. Suppose further that X is compact and f(·, θ) is a continuous function

of x, so that the above maximization problem has a solution.

• For each θ, let argmax f(x, θ) be the set of maximizers.

• Need a concept for argmax f(x, θ) to be increasing as θ increases.
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• A function f : X × Θ → R satisfies increasing differences in (x, θ) ∈ X × Θ if

for all θ′, θ ∈ Θ such that θ′ > θ and for all x, x′ ∈ X such that x′ > x,

f(x′, θ′)− f(x, θ′) ≥ f(x′, θ)− f(x, θ).

Lemma. Suppose that f : X ×Θ → R is twice continuously differentiable. Then, f

satisfies increasing differences in (x, θ) if and only if

∂2f

∂x∂θ
(x, θ) ≥ 0.

• Let x̄(θ) be the maximum element, and x(θ) be the minimum element of argmax f(x, θ).

Theorem 1. Suppose that f : X × Θ → R satisfies increasing differences. Then,

x̄ and x are nondecreasing functions of θ. That is, θ < θ′ implies x̄(θ) ≤ x̄(θ′) and

x(θ) ≤ x(θ′).

• The above theorem holds when the constraint set X also depends on θ in the

following way: X(θ) = [g(θ), h(θ)] where g and h are nondecreasing in θ and g(θ) ≤
h(θ).

• Stronger results can be obtained when f satisfies strictly increasing differences.

A function f : X ×Θ → R satisfies strictly increasing differences in (x, θ) if for

all θ, θ′ ∈ Θ with θ′ > θ and for all x, x′ ∈ X with x′ > x,

f(x′, θ′)− f(x, θ′) > f(x′, θ)− f(x, θ).

Theorem 1’. Suppose that f : X × Θ → R satisfies strictly increasing differences.

Then, every selection x(θ) from argmax f(x, θ) is a nondecreasing function.

• Another variant is when f satisfies decreasing differences. A function f : X×Θ → R
has decreasing differences if or all θ′, θ ∈ Θ such that θ′ > θ and for all x, x′ ∈ X

such that x′ > x,

f(x′, θ′)− f(x, θ′) ≤ f(x′, θ)− f(x, θ).
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Theorem 1”. Suppose that f : X ×Θ → R satisfies decreasing differences. Then, x̄

and x are nonincreasing functions of θ.

IV. Examples

• Consumer Theory

– Let there be two goods, whose consumption levels are denoted by x1 and x2.

The utility function of the consumer is denoted by U(x1, x2).

– Notation: U1 ≡ ∂U
∂x1

, U2 ≡ ∂U
∂x2

– Let p1 be price of good 1, p2 be price of good 2, and m be income.

– Conditions on whether each good is a normal good (its demand is nondecreas-

ing in m.)

• Monopoly

– A monopolistic firm faces a market demand function given by D(p).

– Let c be a (constant) per-unit cost of production.

– Then, when a firm chooses a price p from the set [c,∞), profits are given by

Π(p, c) = (p− c)D(p)

V. Supermodular Games

• A game G = (N, (Si)i∈N , (ui)i∈N ) is a supermodular game if

– Si ⊂ R is nonempty and compact for each i ∈ N

– For each s−i ∈ S−i, ui(·, s−i) is continuous in its own argument si ∈ Si.

– ui satisfies increasing differences in (si, sj) for all j ̸= i (in which case it is

assumed that all other sk, k ̸= i, k ̸= j are fixed and ui is seen as a function

of (si, sj)).

• As before let βi be the best-response correspondence of i ∈ N . Consider two

selections – the largest best response b̄ and the smallest best response b. That is,

b̄(s−i) = maxβi(s−i), b(s−i) = minβi(s−i).

• From Theorem 1, b̄(·) and b(·) are nondecreasing functions of s−i.
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VI. Tarski’s Fixed Point Theorem and Nash Equilibria of Supermodular Games

• Just as Kakutani’s fixed point theorem was useful, the following fixed point theorem

is useful.

Tarski’s Fixed Point Theorem: Suppose

• X a nonempty compact interval of Rn.

• f : X → X nondecreasing. That is, x ≤ y ⇒ f(x) ≤ f(y).

Then, there exists x ∈ X such that f(x) = x. Moreover, there exists a smallest and

largest fixed point.

• The fixed point theorem does not hold when f is nonincreasing instead of nonde-

creasing.

Theorem 2. A supermodular game admits at least one Nash equilibrium. Moreover,

there exists a largest and smallest Nash equilibrium. Formally, there exists s̄ ∈ S

and s ∈ S such that for every Nash equilibrium s ∈ S,

si ≤ si ≤ s̄i, ∀i ∈ N

VII. Iterated Removal of Strictly Dominated Strategies

• It is also shown in Milgrom and Roberts (1990) (as a special case), within the set

of strategies that survive the iterated removal of strictly dominated strategy is the

smallest and largest Nash equilibria.

• The largest and smallest equilibria also play a key role in the outcome of the set of

strategies that survive the iterated removal of strictly dominated strategies.

Theorem 3. Let G be a supermodular game, and let S∗
i denote the set of strategies

for each i ∈ N which survive the iterated removal of strictly dominated strategies

(Version 1). Then for each i ∈ N and si ∈ S∗
i ,

si ≤ si ≤ s̄i.
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Moreover, if the game G has a unique Nash equilibrium, then it is also dominance

solvable.

• While the result is presented here for iterated removal of strictly dominated strate-

gies, the original result includes a broader class of adjustment processes (which the

authors called adaptive dynamics.)

VIII. Examples of Supermodular Games

• Arms Race (outlined in Milgrom and Roberts (1990))

– N = {1, 2} and each country chooses a level si of arms.

– Payoff given by

ui(si, sj) = −C(si) +B(si − sj).

where C(si) is a smooth function, and B(si, s−i) is a smooth concave function

• Cournot Duopoly

• Bertrand Duopoly

IX. Other Topics and References

• Most of notes from Amir (2005), which is a survey on some of the results on com-

plementarity and economics.

• Results for n-dimensional space is given in the following appendix. Results also

hold for more abstract partially ordered sets.

• Results on lattice theory and consumer theory (Mirman and Ruble (2008), Anto-

niadou (2007))

• Summary of results on supermodular games (Vives (1990))

• Tarski’s fixed point theorem for correspondences and alternative proof of the ex-

istence of Nash equilibria and the structure of the set of Nash equilibria – (Zhou

(1994))

• Procedure to find all Nash equilibria of supermodular games (Echenique (2007))

• Supermodular mechanism design (Mathevet (2010))
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• Quasi-supermodularity (ordinal concept of supermodularity) and single-crossing

(ordinal concept of increasing differences) (Milgrom and Shannon (1994))

– An increasing transformation of a supermodular function need not be super-

modular.

Appendix A: The Case of n-dimensional Space (Rn) – Definitions

• Let x, y ∈ Rn, where x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn). Define the

ordering ≤ by x ≤ y ⇔ xi ≤ yi ∀i = 1, 2, · · · , n.

• In contrast to the case when n = 1, when n ≥ 2, not all x and y are comparable.

For example, n = 2, x = (0, 1) and y = (1, 0), neither x ≤ y nor y ≤ x holds.

• Given x, y ∈ Rn, define the operation ∨ by

x ∨ y = (max{x1, y1},max{x2, y2}, · · · ,max{xn, yn})

• In words, x∨ y is an element in Rn where each ith component is given by either xi

or yi, whichever is larger. x ∨ y is called the join of x and y.

• Note that x ≤ x ∨ y and y ≤ x ∨ y, and for all z with x ≤ z and y ≤ z, x ∨ y ≤ z.

(In such a case, x ∨ y is called the supremum of {x, y}.)

• Define the operation ∧ by

x ∧ y = (min{x1, y1},min{x2, y2}, · · · ,min{xn, yn})

• x ∧ y is called the meet of x and y.

• Note that x ∧ y ≤ x and x ∧ y ≤ y, and for all z with z ≤ x and z ≤ y, z ≤ x ∧ y.

(In such a case, x ∧ y is called the infimum of {x, y}.)

• A subset L ⊂ Rn is a sublattice if for every x, y ∈ L, x ∧ y and x ∨ y are both in

L.

• Examples

1. L1 = {(0, 0), (1, 0), (0, 1), (1, 1)} is a sublattice.

2. L2 = {(x1, x2) ∈ R2|x1 + x2 ≤ 1, x1 ≥ 0, x2 ≥ 0} is not a sublattice. Both

(1, 0) and (0, 1) are in L but (1, 1) = (1, 0) ∨ (0, 1) is not.
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3. L3 = {(x1, x2) ∈ R2|0 ≤ x1 ≤ x2 ≤ 1} is a sublattice.

4. L4 = {(x1, x2)|0 ≤ x1 ≤ 1/2, 0 ≤ x2 ≤ 1/2} ∪ {(x1, x2)|1/2 ≤ x1 ≤ 1, 1/2 ≤
x2 ≤ 1} is a sublattice.

• Suppose that X is a sublattice of Rn. A function f : X → R is supermodular if

for every x, y ∈ X,

f(x) + f(y) ≤ f(x ∨ y) + f(x ∧ y)

Proposition 1. Let f : X → R be a supermodular function. The set of maximizers

of f , X∗ = {y ∈ X|f(y) = maxx∈X f(x)} is a sublattice of Rn.

Corollary 1. Let f : X → R be a continuous supermodular function and suppose

that X is a compact sublattice of Rn. Then, there exist a largest maximizer x̄ and

a smallest maximizer x. That is, if x ∈ X∗ = {y ∈ X|f(y) = maxx∈X f(x)}, then
x ≤ x ≤ x̄.

• Caution: This does not mean that all maximizers can be ordered.

B. Increasing Differences and Monotonicity of Maximizers for the General Case

• Let Θ denote the set of parameters and X denote the set of decision variables.

Then,

Proposition 2. Suppose that f : X × Θ → R is a supermodular function on (x, θ).

Then, f satisfies increasing differences in (x, θ).

• It can be shown that if f satisfies increasing differences in (x, θ) ∈ X × Θ, then it

satisfies increasing differences in (θ, x) ∈ Θ×X. Although mathematically equiva-

lent, the order matter when establishing which set consists of decision variable, and

which set consists of parameters.

• Increasing differences is related to monotone comparative statics – the set of solu-

tions is ”increases” as θ increases.
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• Let Φ : Θ → X be a correspondence. Φ is said to be increasing if for every θ and

θ′ in Θ such that θ′ ≥ θ, x ∈ Φ(θ) and x′ ∈ Φ(θ′) imply

x ∧ x′ ∈ Φ(θ) and x ∨ x′ ∈ Φ(θ′).

• For a function f , define X∗(θ) = argmaxx∈X f(x, θ) to be the set of maximizers of

f .

Proposition 3. Suppose that f(·, θ) is supermodular in X for each θ ∈ Θ, and let

f : X ×Θ → R satisfy increasing differences. Then, the correspondence that assigns

to each θ ∈ Θ the set of maximizers X∗(θ) is increasing.

Corollary 2. Suppose that f(·, θ) is supermodular in X for each θ ∈ Θ, and let

f : X ×Θ → R satisfy increasing differences and suppose that for each θ, X∗(θ) has

a smallest and largest element. Let x : Θ → X and x̄ : Θ → X be such that x(θ) is

the smallest element in X∗(θ) and x̄(θ) is the largest element in X∗(θ). Then, the

functions x and x̄ are nondecreasing functions of θ. That is,

θ ≤ θ′ ⇒ x(θ) ≤ x(θ′) and x̄(θ) ≤ x̄(θ′).

• Definition of increasing differences extended to Rn

• f satisfies increasing differences if for any distinct i, j and two vectors x =

(xi, xj , x−ij) and x′ = (x′i, x
′
j , x−ij) with x′j ≥ xj and x′i ≥ xi,

f(x′i, x
′
j , x−ij)− f(xi, x

′
j , x−ij) ≥ f(x′i, xj , x−ij)− f(xi, xj , x−ij)

where x−ij = (x1, · · · , xi−1, xi+1, · · · , xj−1, xj+1, · · · , xn). That is, f satisfies in-

creasing differences iff it satisfies the first definition for any two xi and xj .

• The analogue of Proposition 2 is the following.

Proposition 4. Suppose that f : X → R is a supermodular function on (x, θ). Then,

f satisfies increasing differences.
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• Moreover, in this setting where X ⊆ Rn, supermodularity and increasing differences

are equivalent.

Proposition 5. Suppose that f : X → R satisfies increasing differences on X ⊆ Rn.

Then, f is supermodular on X.

• Characterization of supermodularity and increasing differences in terms of deriva-

tives is given below.

Proposition 6. Let f be a twice continuously differentiable function. Then, f sat-

isfies increasing differences if and only if for all i ̸= j,

∂2f

∂xi∂xj
≥ 0

• The above definition gives a simple way to check increasing differences (and super-

modularity from Proposition 5) when the objective function is twice continuously

differentiable.
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