
Iterated Removal of Dominated Strategies (June 15, June 19)

I. Review

• Game in strategic form: G = (N, (Si)i∈N , (ui)i∈N ) where

– N : set of players

– Si: set of strategies of player i ∈ N

– ui: payoff function of player i ∈ N

• Mixed extension of G: (N, (∆(Si))i∈N , (πi)i∈N ) where

– ∆(Si): set of mixed strategies (probability distributions over Si)

– πi: expected payoff function of player i ∈ N

II. Strictly Dominated Strategies and Weakly Dominated Strategies

Definition. Let G = (N, (Si)i∈N , (ui)i∈N ) be a strategic form game. A strategy of

player i, si ∈ Si is said to be strictly dominated by s′i ∈ Si if for all s−i ∈ S−i,

ui(si, s−i) < ui(s
′
i, s−i)

A strategy si is said to be strictly dominated if it is strictly dominated by some

s′i ∈ Si.

• Notation:

– s−i := (s1, s2, · · · , si−1, si+1, · · · , sn) (strategy combination where the ith com-

ponent is taken out)

– S−i :=
∏

j ̸=i Sj = S1 × S2 × · · · × Si−1 × Si+1 × · · · × Sn

• Interpretation: si is always a worse strategy compared to s′i in terms of the payoffs

that can be realized based on the choice of strategies of the other players.

• Assumption of rationality – rational players do not choose strategies that are strictly

dominated. From this point forward, assume that players are rational in that way.

• Example: Prisoner’s Dilemma (reproduced below)
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A \B C D

C −2,−2 −6, 0

D 0,−6 −5,−5

C is strictly dominated by D for both players.

• If both players are rational, then it is expected that these players both choose D

and not C. However, both players can do better by both choosing C → ”dilemma.”

• In the other examples of this handout – no player has a strictly dominated strategy.

• A strategy si ∈ Si for player i ∈ N is said to be strictly dominant if it strictly

dominates all other strategies s′i ∈ Si (s
′
i ̸= si).

• A weaker form of domination – weak domination (definition given below).

Definition. Let G = (N, (Si)i∈N , (ui)i∈N ) be a strategic form game. A strategy of

player i, si ∈ Si is said to be weakly dominated by s′i ∈ Si if for all s−i ∈ S−i,

ui(si, s−i) ≤ ui(s
′
i, s−i)

and for some s−i ∈ S−i,

ui(si, s−i) < ui(s
′
i, s−i)

A strategy si is said to be weakly dominated if it is weakly dominated by some

s′i ∈ Si. A strategy si ∈ Si for player i ∈ N is said to be weakly dominant if it

weakly dominates all other strategies s′i ∈ Si (s
′
i ̸= si).

Consider the game below.

A \B L R

U 1, 1 1, 0

D 1, 0 0, 0

• For player 1, D is weakly dominated by U but not strictly dominated.

• For player 2, R is weakly dominated by L but not strictly dominated.

III. Definitions for Mixed Extensions and Equivalent Results

• Let G = (N, (Si)i∈N , (ui)i∈N ) be a game where Si is a finite set for all i ∈ N and

consider its mixed extension G′ = (N, (∆(Si))i∈N , (πi)i∈N ).
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• A mixed strategy σi is strictly dominated by another mixed strategy σ′
i in the

mixed extension G′ if

πi(σi, σ−i) < πi(σ
′
i, σ−i), ∀σ−i ∈

∏
j ̸=i

∆(Sj).

• The following is a simpler equivalent form.

Proposition 1. A mixed strategy σi is strictly dominated by another mixed strategy

σ′
i if and only if

πi(σi, s−i) < πi(σ
′
i, s−i), ∀s−i ∈ S−i.

• The next statement is a word of caution.

Caution. Let si ∈ Si be a strategy that is not strictly dominated in the game

G = (N, (Si)i∈N , (ui)i∈N ). Then, si as a mixed strategy can still be strictly dominated

by some σ′
i ∈ ∆(Si) in the mixed extension G′.

• However, the following does hold.

Proposition 2. Suppose that si ∈ Si is strictly dominated in the game G. Then any

mixed strategy σi such that σi(si) > 0 is strictly dominated in the mixed extension

G′.

IV. Iterated Removal of Strictly Dominated Strategies – Example

1 \ 2 L C R

U 3, 3 2, 1 0, 0

M 2, 2 2, 1 0, 0

D 0, 1 0, 1 0, 0

• Suppose that both players are rational in that they do not choose strictly domi-

nated strategies. Moreover, suppose that each player knows that the other player

is rational.
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• In the above example, none of the strategies for player 1 (U , M , D) are strictly

dominated. So, supposing that player 1 is rational, player 1 still may choose U , M ,

or D.

• Strategy R of player 2 is strictly dominated by L and C. L nor C is strictly

dominated. Therefore, player 2, if rational, will not choose R.

1 \ 2 L C R

U 3, 3 2, 1 0, 0

M 2, 2 2, 1 0, 0

D 0, 1 0, 1 0, 0

• Suppose that player 1 knows that player 2 is rational. Then, player 1 knows that

player 2 will not choose R. Now, because both players know that player 2 will not

choose R, the game is reduced to the following:

1 \ 2 L C

U 3, 3 2, 1

M 2, 2 2, 1

D 0, 1 0, 1

• In the reduced game, D is now strictly dominated by M . So, if player 1 knows that

player 2 is rational, player 1 will not choose D. If player 2 also knows that player

1 knows that player 2 is rational, then both players know that player 1 will not

choose D, and the game is reduced to the following:

1 \ 2 L C

U 3, 3 2, 1

M 2, 2 2, 1

• In the game above, strategy C is strictly dominated by L. Therefore, if player 2

knows that player 1 knows that player 2 is rational, then player 2 will not choose

C. If player 1 also knows that player 2 knows that player 1 knows that player 2

is rational, then in both players’ minds, the game is reduced to the following with

now C deleted:

1 \ 2 L

U 3, 3

M 2, 2
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• Now, M is strictly dominated by U . Therefore, if player 1 knows that player 2

knows that player 1 knows that player 2 is rational, then player 1 will not choose

M . If player 2 also knows that player 1 knows that player 2 knows that player

1 knows that player 2 is rational, then both players can deduce that the strategy

combination (U,L) results:

1 \ 2 L

U 3, 3

• The process described above → iterative removal of strictly dominated strategies

• Because the knowledge of rationality assumed for this process is complex, it is

convenient instead to assume the following.

Common knowledge of rationality: Assume any chain (including infinite ones)

of “Player 1 knows that player 2 knows that · · · (infinitely long).”

V. Iterated Removal of Strictly Dominated Strategies – General Procedure

• Suppose throughout this section that the set of strategies Si for each i ∈ N is finite.

Version 1: Delete All Strictly Dominated Strategies

1. Step 1: For all i ∈ N , delete all such si ∈ Si that are strictly dominated. Let

S1
i denote the set of strategies that remain.

2. Step 2: Consider now the game with S1
i as the set of strategies for each i ∈ N .

Delete all such si ∈ S1
i that are strictly dominated by some s′i ∈ S1

i . Let S2
i

denote the set of strategies that remain.

3. Continue the process until there are no strategies that are strictly dominated.

• If G is a game such that the above process stops and yields a unique strategy

combination (s∗1, s
∗
2, · · · , s∗n) ∈

∏
i∈N Si, then the game G is said to be dominance

solvable.

• The following proposition is useful in showing an important property of this process

for finite games.
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Proposition 3. Let G = (N, (Si)i∈N , (ui)i∈N ) be a game in strategic form. For each

i ∈ N , let Ai ⊆ Si and consider the game GT = (N, (Ai)i∈N , (ui)i∈N ) where ui is the

same as in G, restricted to the set
∏

i∈N Ai. Let si ∈ Ai be strictly dominated by

some s′i ∈ Ai in the game G. Then, si is also strictly dominated by s′i in the game

GT .

• This result implies that it does not matter whether all strictly dominated strategies

or just one strictly dominated strategy is deleted in one step.

• It also does not matter whether all players delete their strictly dominated strategies

in one step or just one player deletes his/her strictly dominated strategies in one

step.

• From above, we can define two alternative versions, both leading to the same set of

strategies in the end.

Version 2: Delete Only One Strictly Dominated Strategy

1. Step 1: Choose one player i ∈ N who has a strictly dominated strategy. Delete

one si ∈ Si that is strictly dominated. Let S1
i denote the set of strategies that

remain, and for the remaining players j ̸= i, let S1
j = Sj .

2. Step 2: Consider now the game with S1
i as the set of strategies for each i ∈ N ,

choose one i ∈ N and delete one si ∈ S1
i that is strictly dominated by some

s′i ∈ S1
i . Let S2

i denote the set of strategies that remain for player i and let

S2
j = S1

j for all other players j ≠ i.

3. Continue the process until no player has a strictly dominated strategy.

VI. Iterated Removal of Weakly Dominated Strategies

• Review of definition of weak domination:

A strategy of player i, si is said to be weakly dominated by another strategy s′i if

for all s−i ∈ S−i,

ui(si, s−i) ≤ ui(s
′
i, s−i)
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and for some s−i, the above inequality holds with a strict inequality <. That is, for

some s−i ∈ S−i,

ui(si, s−i) < ui(s
′
i, s−i)

• If si is weakly dominated by s′i, then choosing si is never better and in at least

one case worse than choosing s′i.

• By replacing “strictly” with “weakly” in each version, one can think of anaologues

of the two versions for strict domination.

Version 1W: Delete All Weakly Dominated Strategies

1. Step 1: For all i ∈ N , delete all such si ∈ Si that are weakly dominated. Let

S1
i denote the set of strategies that remain.

2. Step 2: Consider now the game with S1
i as the set of strategies for each i ∈ N .

Delete all such si ∈ S1
i that are weakly dominated by some s′i ∈ S1

i . Let S2
i

denote the set of strategies that remain.

3. Continue the process until there are no strategies that are weakly dominated.

Version 2W: Delete Only One Weakly Dominated Strategy

1. Step 1: Choose one i ∈ N , and do the following. Delete only one si ∈ Si that

is weakly dominated. Let S1
i denote the set of strategies that remain.

2. Step 2: Choose another i ∈ N , do the following. Considering now the game

with S1
i as the set of strategies for each i ∈ N , delete si ∈ S1

i that are weakly

dominated by some s′i ∈ S1
i . Let S

2
i denote the set of strategies that remain.

3. Continue the process until there are no strategies that are weakly dominated.

• The strategies that remain after version 1W and 2W may not be the same, even if

each player has a finite number of strategies – that is, even if Si is a finite set for

all players.
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• The order in which the players are chosen in version 2W also affects which strategies

remain in the end.

• Main reason – Proposition 3 fails to hold if “strictly dominated” replaced by “weakly

dominated.”

VII. Never Best Response and Rationalizability

• A closely related concept to strict domination is concept of a strategy being never

a best response.

Definition. Let G = (N, (Si)i∈N , (ui)i∈N ) be a game in strategic form. A strategy

si ∈ Si for player i is said to be a best response to s−i ∈ S−i if

ui(si, s−i) ≥ ui(s
′
i, s−i), ∀s′i ∈ Si.

A strategy si ∈ Si is never a best response if there does not exist s−i ∈ S−i to

which si is a best response.

• If a strategy si is strictly dominated, then it is never a best response.

• Consider now iterated removal of strategies that are never best responses.

Iterated Removal of Strategies that are Never Best Responses:

1. Step 1: For all i ∈ N , delete all such si ∈ Si that are never best responses. Let

S1
i denote the set of strategies that remain.

2. Step 2: Consider now the game with S1
i as the set of strategies for each i ∈ N .

Delete all such si ∈ S1
i that are never best responses. Let S2

i denote the set of

strategies that remain.

3. Continue the process until there is not a strategy that is never a best response.

• The end result is a set of strategies that are said to be rationalizable. See Bern-

heim (1984) and Pearce (1984).

• For two-player games (mixed extension of a finite game in strategic form), set of

rationalizable strategies coincides with the set of strategies that survive the iterated

removal of strictly dominates strategies. (Never best response = strictly dominated)
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• For more than two players, the equivalence result may not hold. However, a strategy

that is strictly dominated must never be a best response.
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